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Many continuous medical tests often rely on a threshold for diagnosis. There are two 

sequential testing strategies of interest: Believe the Positive (BP) and Believe the Negative 

(BN). BP classifies a patient positive if either the first test is greater than a threshold 1θ or 
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negative on the first test and greater than 2θ on the second test. BN classifies a patient 

positive if the first test is greater than a threshold 3θ and greater than 4θ on the second test. 

Threshold pairs θ = 1 2(θ ,θ ) or 3 4(θ ,θ ) , depending on strategy, are defined as optimal if 

they maximized GYI = Se + r(Sp – 1). Of interest is to determine if these optimal 

threshold, or optimal operating point (OOP), estimates are “good” when calculated from a 

sample. The methods proposed in this dissertation derive formulae to estimate θ assuming 

tests follow a binormal distribution, using the Newton-Raphson algorithm with ridging. A 

simulation study is performed assessing bias, root mean square error, percentage of over 

estimation of Se/Sp, and coverage of simultaneous confidence intervals and confidence 

regions for sets of population parameters and sample sizes. Additionally, OOPs are 

compared to the traditional empirical approach estimates. Bootstrapping is used to estimate 

the variance of each optimal threshold pair estimate. The study shows that parameters such 

as the area under the curve, ratio of standard deviations of disease classification groups 

within tests, correlation between tests within a disease classification, total sample size, and 

allocation of sample size to each disease classification group were all influential on OOP 

estimation. Additionally, the study shows that this method is an improvement over the 

empirical estimate. Equations for researchers to use in estimating total sample size and SCI 

width are also developed. Although the models did not produce high coefficients of 

determination, they are a good starting point for researchers when designing a study. A 

pancreatic cancer dataset is used to illustrate the OOP estimation methodology for 

sequential tests. 
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1 Introduction 

 

1.1. Introduction 

In a clinical setting, determining whether or not a patient has a disease of interest is a 

common task among physicians; however, the method to determine what test to give and 

how disease status is determined varies. It is becoming increasingly common that rather 

than being given a single test, patients may be given a series of tests before diagnosis. 

Performing multiple tests on patients can be costly, both monetarily and physically. 

Instead of subjecting all patients to multiple tests, strategies have been derived using 

logic rules to combine tests so that only a subset of patients receive multiple tests.  

 Combining diagnostic tests may improve the overall accuracy of diagnosis as 

opposed to relying on a single test (Shen, 2008). One possible testing strategy that may 

improve accuracy and decrease cost includes using a combination of diagnostic tests. 

Give the patient a test (consider this to be test 1). Depending on the result of test 1, a 

second test may or may not be given. For example, consider body mass index (BMI), 

which is a number calculated from a person’s weight and height as 
2

( )
703

( )

weight lbs

height ins
 ; 

this is an easy measurement to calculate. An elevated BMI is considered to be a risk 

factor for diabetes. However, a high BMI alone may not be conclusive evidence to 
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diagnose a patient with diabetes. Another test, for example a blood glucose 

measurement, may be given before diagnosis is confirmed, at least for some people. Note 

that, in general, a less expensive or burdensome test is usually used as the first test.  

   

1.2. Methods of Combining Tests 

There are several methods in the literature describing ways to combine diagnostic tests; 

such methods generally fall under two categories: non-sequential and sequential. Non-

sequential testing consists of deciding a priori what diagnostic tests will be given, and 

administering all of them to the patient regardless of test outcomes. Once all the tests 

have been performed, a diagnosis can be made. One strategy of combining information 

from the tests is to create a linear combination of the two test results (Shen, 2008; Pepe & 

Thompson, 2000; Su & Liu 1993; Thompson, 2003; Etzioni, 2008), with the goal of 

choosing the combination that maximizes accuracy of diagnosis (Pepe & Thompson, 

2000). There are two strategies that are often used in non-sequential testing situations: 

“believe the positive” (BP) and “believe the negative” (BN) (Seto, 2005; Polister, 1980). 

 Sequential testing, on the other hand, consists of selecting a sequence of tests but 

only administering the subsequent test(s) dependent on the results of the previous test(s). 

The focus of this research is on sequential testing strategies. BP and BN approaches can 

also be applied to sequential testing strategies (Thompson, 2003; Oxley et al., 2011). The 

logic rules behind these two strategies will be detailed in the next chapter. For both BP 

and BN, consider two tests; all patients receive the first test. Each of these strategies will 

either: a) diagnose the patient as positive for disease, b) diagnose the patient as disease-
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free, or c) send the patient on to receive the second test; the choice of which decision is 

selected is dependent on a strategy-specific threshold.  

 Oftentimes the test results are measured on a continuous scale so that the results 

need to be dichotomized in order to be interpreted as indicative of non-disease or disease 

(Halpern et al., 1996). This allows physicians to confirm the participant as healthy, 

investigate further with an additional test, or start a specific treatment, i.e., diagnosis the 

patient with disease (Jund et al., 2005). We will assume that higher values of a test 

suggest disease is present, and vice versa (Leeflang et al., 2008), although tests exist in 

which low values indicate disease (such as using hemoglobin to screen for anemia). 

Dichotomizing the continuous outcome is done by means of comparison to a threshold 

(Skaltsa, Jover, & Carrasco, 2010); methods of analyzing these data as well as 

determining this threshold have been recently studied throughout the biomedical 

literature. 

 

1.3. ROC Curves and Related Measurements 

Sensitivity (Se) is a measure of the true positive rate (TPR; proportion of correct 

classification of unhealthy individuals) and specificity (Sp) is a measure of the true 

negative rate (proportion of correct classification of healthy individuals). Oftentimes, we 

are more interested in 1 – Sp, the probability of incorrectly classifying a healthy 

individual, or the false positive rate (FPR) (Perkins & Schisterman, 2005; Schisterman & 

Perkins, 2007), rather than Sp itself, as this represents false positive classification. 
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 The ROC curve plots the Se (vertical axis) versus 1-Sp (horizontal axis) across 

all possible choices of thresholds (Metz, 1978; Faraggi, 2003; Fluss, Faraggi, & Reiser, 

2005; Shen, 2008; Skaltsa, Jover, & Carrasco, 2010). ROC curve analysis, although 

initially developed for electronic signal detection and mainly used in psychophysical-type 

studies (Hanley, 1989; Schisterman & Perkins, 2007; Pepe, 2012; Green & Swets, 1966), 

has proven very useful in the biomedical field (fully developed in this area by Swets and 

Pickett in 1982 (Hanley, 1989)), as it graphically displays a diagnostic test’s ability to 

correctly identify true positive and true negative patients over varied choices of 

thresholds (Perkins & Schisterman, 2005; Leeflang et al., 2008; Shen, 2008).  

 The chance line is the line connecting the points (0, 0) and (1, 1), and is used to 

determine whether or not the diagnostic test(s) is better (good) or worse (bad) than 

merely selecting a diagnosis by chance. Perfect classification occurs at the (0,1), or where 

both Se and Sp are equal to 1, indicating that all patients with the disease were correctly 

classified. Thus it follows that ROC curves falling closer to the (0,1) point are associated 

with tests that are more accurate in diagnosis. ROC curves can be drawn empirically or 

smoothed (Hanley, 1989), and are used to select a good, or optimal, threshold; that is, a 

threshold that detects true positives and true negatives most accurately (Halpern et al., 

1996). 

 

1.3.1 Empirical ROC Curves 

Empirical ROC curves make no distributional assumption on the data. Because of this, 

the ROC curve appears as a step curve, where the size of the steps is dependent on the 
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sample size. This may not show the true relationship between test(s) and the disease of 

interest because the true shape of the ROC curve has not been exposed. Smoothed ROC 

curves can also be constructed in a non-parametric way with kernel estimation without 

making distributional assumptions (Zou et al., 2013). 

 

1.3.2 Binormal ROC Curves 

The most common distributional assumption in diagnostic medicine is that both the 

healthy and diseased patients follow independent normal distributions (Hanley, 1988; 

Metz, 1980; Swets, 1979). This is referred to as a binormal distributional. If the data 

being analyzed are not binormal, a Box-Cox transformation may be applied to the data to 

satisfy this assumption. Placing this assumption on the data allows us to fit a smooth 

curve, which may better unveil the relationship between the disease of interest and the 

test(s) (Zhou, Obuchowski, & McClish, 2011). 

 

1.3.3 Measures of Accuracy 

In order to determine sufficient discrimination between healthy and disease groups for 

various thresholds, there are a number of different measures of test accuracy. The choice 

of measure depends on the method of optimization of the diagnostic accuracy (Pepe & 

Thompson, 2000). The Se and Sp are common measures of accuracy. Additional 

measures that combine the Se and Sp are the ratios of Se and Sp such as the diagnostic 

likelihood ratio (Pepe, 2003), the diagnostic odds ratio (Böhning, Holling, & Patilea, 
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2010), and the Youden Index (YI) (Youden, 1950; Faraggi, 2003; Fluss, Faraggi, & 

Resier, 2005). 

 

1.4. Optimal Operating Point(s) 

The focus of this research involves continuous diagnostic tests (tests that could, 

theoretically, take on any value), which implies a need for a threshold such that each test 

can dichotomize the corresponding results as either healthy and diseased. There are, 

theoretically, an infinite number of choices of thresholds, θ, from which to select 

(Schisterman et al., 2005). The choice of the optimal operating point (OOP) defines the 

best threshold value to discriminate between healthy and disease states. We want to 

choose an OOP that in some way optimizes accuracy. For reasons detailed in the next 

chapter, the YI is a popular measure (Fluss, Faraggi, & Reiser, 2005; Perkins & 

Schisterman, 2005; Ruopp et al., 2008; Schisterman et al., 2008), and is the focus of this 

research. 

 The YI, initially defined as a function of the sum of the Se and Sp-1 and 

calculated from the ROC curve, can be used to compare threshold candidates to select the 

OOP. A definition of the optimal operating point (OOP) is the threshold that will 

maximize the sum of the Se and Sp simultaneously. This measure can be expanded to 

weight the Se and Sp, incorporating costs of error rates and disease prevalence – this is 

known as the Generalized Youden Index (GYI).  
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1.5. Motivation and Goals 

Given a single diagnostic test, and an assumption of binormal data, formulae have been 

derived to determine the OOP. However, as previously outlined, sometimes multiple tests 

are given to enhance the classification of disease. Not much is known about the OOP of 

these strategies in terms of methodology to locate the OOP or its properties. The goal of 

this research is to not only develop a method to select an OOP but also evaluate its 

properties for each of the previously mentioned sequential testing strategies (BP and BN). 

Specifically, for each of these two sequential testing strategies, we will derive the OOP 

corresponding to the YI, evaluate how close the estimates are to the true values, and 

determine under what conditions the estimated OOP performs best.  

  By using these derived OOPs as opposed to those calculated empirically, our goal 

is to improve the bias and other associated measurements in order to provide accurate and 

viable thresholds that maximize correct classification of patients. Various summary 

measures will be used to evaluate the choice of the optimal threshold pair. These methods 

will be evaluated using simulated data, and demonstrated with a relevant real-life dataset. 

Additionally, it is of interest to use the results of the simulation study for each sequential 

testing strategy to derive formulae for use in sample size estimation as well as widths of 

confidence intervals. Clinicians will benefit from this research by quickly being able to 

determine disease classification of patients and/or determine whether or not additional 

tests may be necessary to maximize correct classification. Additionally, they should be 

able to select the best testing strategy according to the patient data available. 
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1.6. Prospectus 

This research is organized as follows: chapter 2 outlines a review of current strategies in 

the literature for determining OOPs. In chapter 3, methodological details will be provided 

for estimating the OOP and its variance for sequential testing strategies. The summary 

measurements necessary to describe the accuracy of the OOP will also be calculated. 

Chapter 4 is devoted to the results of the simulation study, as well as related sub-

analyses. Chapter 5 applies the methodology to real data. Discussion and direction for 

future work is discussed in chapter 6. 
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2 Review of Relevant Statistical Topics  

 

2.1. Introduction 

In clinical practice, medical tests that generate continuous outcomes are often conducted 

in  patients to categorize an individual patient as diseased or non-diseased. However, in 

order to use this classification technique, a threshold needs to be defined. The optimal 

value for this threshold depends on what is important to the researcher or clinician. In 

some cases, it may be more important to correctly classify those with disease vs. non-

disease or vice versa. 

 

2.2. Receiver Operator Characteristic (ROC) Curves 

The ROC curve is a graphical way to summarize a diagnostic test’s ability to correctly 

classify patients (Perkins & Schisterman, 2005). This curve is a visual plot of the Se (or 

the TPR) on the horizontal axis versus 1-Sp (or the FPR) on the vertical axis across all 

possible threshold values. Use of ROC curve analysis can aid in the selection of a good, 

or optimal, threshold (OOP); that is, a threshold that detects true positives and true 

negatives most accurately (Halpern et al., 1996). This is done by selecting pairs of Se and 

Sp off of the curve and considering the thresholds connected to these as possible optimal 

thresholds. How these selected pairs of Se and Sp would be associated to the thresholds 

connected to them would have to be done via measures described in section section 2.3. 

 Fluss, Faraggi, & Reiser (2005) indicate the need to estimate the Se and Sp 

through the cumulative distribution function (CDF). There are a number of ways to 
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approximate the CDF comprising of non-parametric and parametric estimation, leading 

to both empirical and smooth ROC curves (Hanley, 1989). Non-parametric methods 

include the use of an empirical CDF and a kernel smoothing function; the former 

provides a step function while the latter is a smooth function. Parametric estimation 

assumes a distribution of the data, most commonly a binormal distribution. 

 Empirical estimates of the OOP can be estimated from all possible data points. In 

real life, the OOP has usually been developed in a data-driven, or empirical, way; the data 

tends to dictate the OOP rather than theory (Leeflang et al., 2008). As defined by Zhou, 

Obuchowski, & McClish (2011), let Hn represent the number of patients without disease, 

Dn represent the number of patients with the disease, and ( )n iHF c and ( )n iDF c represent 

one minus the CDF, or the survival functions. For the single test case, the empirical ROC 

curve is comprised of the plotted pairs (FPR, TPR) defined as 

 
1 1

1 1
( ) , ( )

n nH D
n ni iH DT c T cj jHj i Dj iH D

F c I F c I
n n           

 
   

 
 (2.1) 

where the indicator variable I is equal to one if  Hj iT c   (or Dj iT c  ) and zero otherwise. 

Note that these pairs are constructed to correspond to each possible threshold value from 

the sample;  i ranges from 1, …, TSS, where H DTSS n n  . The first coordinate 

represents the FPR, while the second coordinate represents the TPR. The resulting curve 

is a step curve. The OOP is chosen as the observation from the ROC curve that 

maximizes YI. This method makes no distributional assumption on the two groups, nor 

does it say anything about the form of the plot (Zou, O’Malley, & Mauri, 2007). 
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 Alternatively, the Kernel method (Zou, Hall, & Shapiro, 1998; Fluss, Faraggi, 

& Reiser, 2005) can be used to estimate a somewhat smooth curve from the empirical 

CDFs. The points on the ROC curve are defined as 

  
1

1
, 0,1

in
ij

i
j i i i

x T
F k dx i

n h h






 
  

 
  (2.2) 

where k is the kernel function, hi is the bandwidth, Tij is the continuous observed result of 

the test of the jth subject with or without the condition (k = 1 or k = 0 respectively). The 

Gaussian kernel function,  
2

2
1

2

x
x e


 , can be used to rewrite equation (2.2) as 

  
1

, 0,1
in

ij
i

j i

T
F i

h


 



 
  

 
 , (2.3) 

and iterative numerical methods are used to select the OOP. This method isn’t stable at 

the extremes of the ROC curve (Lasko et al., 2005). 

 A common method of estimating a smooth ROC curve is to assume a parametric 

distribution for the data.  This is usually done by assuming a binormal form. Binormal 

ROC curves are based on a key assumption regarding the data. It is assumed that the data 

within the disease (D) and healthy (H) groups each independently follow normal 

distributions, which together follow a bivariate normal distribution. For example, the 

healthy group follows a bivariate normal distribution (using the symbol ~ for “is 

distributed as”) as 2 2
1 2 1 2~ ( , , , , )H H H H HH BVN      , where iH  represents the 

respective means, 2
iH  represents the respective variances, and ρ represents the 

correlation between tests. If the data are not normally distributed, it is often assumed that 

a transformation, such as a Box-Cox transformation, can be applied to the data in an 
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attempt to produce a normal distribution (Hanley, 1988; Hanley, 1989). The Box-Cox 

transformation is defined as 

 
1

, 0

log , 0

i

i

i

y
y

y



 




 
 

 

, (2.4) 

where y is the variable of interest and λ is the transformation parameter. The ROC curve 

for binormal data is defined as 

 1( ) ( ( ))ROC t a b t     (2.5) 

where D H

D

a
 



 , H

D

b



 , and Ф refers to the standard normal cumulative distribution 

function (CDF) (Pepe, 2003). 

 

2.3. Useful Measures to Select an OOP 

According to Zou et al. (2013), the goal for deriving an optimal threshold should include 

aspects of accuracy, agreement, best point, and information. There are a couple of 

measures that summarize the ROC curve into a single value (Fluss, Faraggi, & Reiser, 

2005) that can be used to identify an “optimal” threshold. The goal is that these measures 

minimize classification error (Jund et al., 2005). Measures used to select the OOP can 

include, but are not limited to the diagnostic odds ratio (Böhning, Holling, & Patilea, 

2010), the (0,1) criteria or the Euclidean Distance (ED) (Zou et al., 2013), and the 

Youden Index (YI) (Faraggi, 2003; Fluss, Faraggi, & Resier, 2005). Zou et al. (2013) 

also mention the measures percent correct diagnosis (PCdx), kappa (κ), and mutual 

information (MI); the former two maximize agreement between the reference standard 
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(RS) and the diagnosis (dx) based on tests, while the latter maximizes the information 

shared between RS and dx. 

 The diagnostic odds ratio (DOR), as cited by Böhning, Holling, & Patilea (2010) 

is defined as 

 
1 1

Se Sp
DOR

Se Sp
 

 
. (2.6) 

An OOP can be defined as the value that maximizes the DOR. However, problems arise 

with convexity when the variances between the healthy and the diseased groups are 

equal; values that maximize the DOR are the values on the boundary of the parameter 

range, which are useless OOPs. Böhning, Holling, & Patilea (2010) also suggest that 

although this property does not generalize to the unequal variance case, other patterns 

arise that still rule out the DOR as a useful measure for determining OOPs (these patterns 

are not explained in the literature; a statement is made by Böhning, Holling, & Patilea 

(2010) that “Other patterns than convexity arise, which are neither suitable for using the 

DOR as an optimizing criterion. So it’s not worthwhile looking for a generalization of the 

convexity property – it does not generalize.”). 

 The (0,1) criteria, also known as the geometric method or the ED method, refers 

to the selection of a threshold such that the point is the closest (in distance) on the ROC 

curve to the point (0,1) on the axes. Perkins & Schisterman (2005) note that this method 

more specifically involves locating the threshold corresponding to the shortest radius 

from the point (0,1) and the ROC curve; where this radius intersects with the curve is 

then considered to be the OOP. Formally, the OOP using this measure would be 

determined by 
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 2 2* min {(1 ( )) (1 ( )) }Se Sp      , (2.7) 

where   represents  all possible threshold values and  * is the OOP selected from 

amongst all  . However, this method does not provide the opportunity to control for cost 

(monetary, patient burden, or misclassification) and disease prevalence if desired for 

overall misclassification rates (Perkins & Schisterman, 2005). 

 Another common measure is the Youden Index (YI), which is the focus of this 

research. The YI is the maximum of the sum between the Se and Sp – 1 (Skaltsa et al., 

2010; Leeflang et al., 2008; Perkins & Schisterman, 2005; Halpern et al., 1996), and is 

visualized as the vertical distance between the ROC curve and the chance line. Figure 2.1 

depicts this relationship.  

Figure 2.1: Youden Index 

 

The YI, oftentimes referred to as J in the literature, is formally defined as  

 max { ( ) ( ) 1},YI Se Sp      (2.8) 
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where   is taken over all possible choices of thresholds.  * is the value that 

maximizes this measure. This may be rewritten as YI = TPR( ) – FPR( ). This index 

ranges between -1 and 1, with the subset [-1, 0) having the opposite interpretation as the 

subset (0, 1]; the latter is the usual range. Values closer to one represent a more accurate 

test (Perkins & Schisterman, 2005). The YI does not have the boundary (convexity) 

issues that the DOR has (Böhning, Holling, & Patilea, 2010), making it a more popular 

measure (Fluss, Faraggi, & Reiser, 2005; Perkins & Schisterman, 2005; Ruopp et al., 

2008; Schisterman et al., 2008). 

 Fluss, Faraggi, & Resier (2005) note that when the two populations (healthy and 

diseased) are completely distinguishable, YI = 1, while complete overlap of the two 

populations yields YI = 0, as shown below in Figure 2.2. Note that this measure is 

independent of population size. 

Figure 2.2: Small, Medium, and Large Population Overlaps (Respectively) 
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 The YI can also be extended to what is known as the Generalized Youden 

Index (GYI). This extends the YI to include cost and prevalence, and is defined as 

 max { ( ) [ ( ) 1]} max { ( ) ( )},GYI Se r Sp TPR rFPR          (2.9) 

where r is defined as 
( )(1 )

( )
FP TN

FN TP

C Cp

p C C




. The value C represents the cost, p represents 

the prevalence, FP represents the false positive group, TN represents the true negative 

group, FN represents the false negative group, and TP represents the true positive group. 

Equivalently, r can also be notated as 
1

a





, where π represents the prevalence of disease 

and FN

FP

C
a

C
 , which refers to the misclassification cost of a FN as opposed to a FP 

classification (Perkins & Schisterman, 2005) and CTN  and CTP  are taken to be zero. Note 

that when r = 1, GYI = YI. Since we can weight the Se and Sp in the YI equation to 

produce the GYI, this is an improvement over the (0, 1) criterion (Perkins & Schisterman, 

2005), again, making the YI/GYI a more popular measure. 

 There are other possible measures to derive optimal thresholds. The kappa is 

defined as 

 
   

 
P A P E

1 P E






, (2.10) 

where P(A) is the proportion of times the tests agree and P(E) is the proportion of times 

the tests are expected to agree by chance. We also have the PCdx and the MI, which is 

defined as 

 ( , ) ( ) ( ) ( , )MI MI D T H D H T H D T       , (2.11) 
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where θ represents any threshold, D represents the diagnosis, T represents the gold 

standard, and H are entropies. However, as stated by Zou et al. (2013), the YI and ED 

appear to be robust and stable for the underlying set of ROC parameters (including AUC, 

correlation, b, etc). However, the results based on PCdx, κ, and MI tend to differ, 

depending on prevalence. 

 

2.4. Area Under the Curve (AUC) and its Influence on the OOP 

The AUC is a common measure of overall test performance (Westin, 2001; Greiner, 

Pfeiffer, & Smith, 2000). This measure summarizes the accuracy over the entire ROC 

curve (Grenier, Pfeiffer, & Smith, 2001) rather than just at a particular point on or portion 

of the ROC curve. This measure is defined as  

 
1

0
( )AUC ROC t dt   (2.12) 

or 

 
21

a
AUC

b

 
  

 
 (2.13) 

assuming the binormal form of the ROC curve. 

 Recall from Chapter 1 that the chance line refers to the diagonal line connecting 

the point (0, 0) and (1, 1). An uninformative test (Pepe, 2003) diagnoses the patient no 

better than guessing, and has an AUC of 0.5. A perfect test would be reflected in an ROC 

curve passing through the point (0, 1), and hence the corresponding AUC would be equal 

to 1. Greiner, Pfeiffer, & Smith (2001) cite a guideline suggested by Swets in 1998 that 

contextualizes the values of AUC: uninformative (AUC = 0.5), less accurate  
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(0.5 < AUC ≤ 0.7), moderately accurate (0.7 < AUC ≤ 0.9), highly accurate  

(0.9 < AUC < 1), and perfect classification (AUC = 1). Thus, a higher AUC reflects a 

better test accuracy.  

 While this measure provides a summary of overall accuracy of the test, it does not 

aid in the selection of an OOP for diagnostic purposes. It does, however, influence the 

OOP by influencing the shape of the ROC curve. Larger AUC values represent more 

accurate diagnostic tests, while lower AUC values indicate less accurate tests. 

 

2.5. OOP for the Univariate Case using the YI and Binormal Assumption 

As described above, empirical ROC curves can be used to aid in the selection of the 

OOP. Empirically derived Se and Sp pairs would be taken from the curve and the data 

point that is associated with them would be assessed via the YI. The data point that yields 

the highest YI would then be considered as the OOP. However, Leeflang (2008) and 

Fluss, Faraggi, & Reiser (2005) have shown that parametric methods perform better in 

the selection of an OOP. Although a kernel smoothing method could be used, in a 

univariate diagnostic test case, the formula for determining the OOP via the Youden 

Index has been well documented when a binormal model is assumed.  

 Let X be a test’s measure for truly diseased and Y be a test’s measure for truly 

healthy. Assume X and Y each independently follow a normal distribution such that 

 2~ ( , )i D DX N   and 2~ ( , )j H HY N   , (2.14) 
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where i = 1, …, Dn and j = 1, …, Hn , and assume that D H   (this inequality can be 

reversed if you switch the cases and controls in the subsequent analysis). The sensitivity 

and specificity are 

 ( ) D

D

Se
 


 
  

 
 (2.15) 

and 

 ( ) H

H

Sp
 


 
  

 
, (2.16) 

where, again, Ф represents the standard normal CDF. To obtain the OOP,  *, across all 

values of  , substitute equations (2.15) and (2.16) into equation (2.8), set equal to zero 

and solve. It has been shown (Halpern et al., 1996; Fluss, Faraggi, & Reiser, 2005) that 

the result from the quadratic yields a maximum, or OOP, of  
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. (2.17) 

This simplifies when the variance between the healthy and disease groups is equal to 

 *
2

D H  
 . (2.18) 

To obtain the Youden Index *  is inserted into equation (2.8); this value should be the 

highest YI available, thus validating the choice of the OOP. The same approach could be 

used for the GYI in equation (2.9) (Jund et al., 2005; Skaltsa et al., 2010).  

 While Jund et al. (2005) and Leeflang (2008) describe situations in which the data 

are lognormal, these situations can be transformed to normal and the methodology 
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described above can be applied. Schisterman & Perkins (2007) show that, rather than 

assuming a normal distribution,  one could assume the two groups each follow a gamma 

distribution such that 

 ~ ( , )i x xX   and ~ ( , )j y yY   , (2.19) 

where i and j are defined as in the normal case, Γ is the gamma function, and α and β are 

the shape and scale parameters respectively. This is an important distinction from the 

lognormal case because gamma data cannot be transformed to normal; hence new 

methodology needs to be derived. A closed form solution can be found when the shape or 

scale parameters are equal across groups; otherwise numerical approximation methods 

must be used. Then YI and θ* can be estimated by 

 ( ) ( ) 1YI F G    , (2.20) 

where F and G are the gamma CDFs with F = 1 - F. The OOP, θ*, will be the value that 

yields the largest YI. 

 

2.6. Use of More than One Diagnostic Test (Sequential Testing) 

While much is known about the derivation and properties of an OOP for a single 

diagnostic test strategy (Shen, 2008), not as much is known regarding the same for 

sequential diagnostic test strategies. As an example, consider two tests. The first test, Test 

1, is given to all patients. The second test, Test 2, is given to a subset of these patients 

pending the results of Test 1. A sequential testing strategy may be considered due to cost 

of the tests, invasiveness of the tests, and/or for improved diagnostic accuracy (Shen, 

2008). These two tests may either be two different tests taken at two different time points, 



www.manaraa.com

    21

two tests taken at the same time (for example, low-density lipoprotein and high-density 

lipoprotein), or the same test taken longitudinally. 

 There are two popular strategies currently published and used in the literature. 

These are referred to as Believe the Positive (BP) and Believe the Negative (BN). Other 

methods to combine the tests exist as well, such as those previously discussed in Chapter 

1, but are not the focus of this research and will not be discussed further here. Diagnoses 

for both testing strategies in this dissertation are made based on Test 1 as to whether the 

patient is healthy/diseased or needs further testing, and this decision varies based on the 

strategy employed. Descriptions of both sequential methods are found in the following 

subsections. A visual summary of each can be seen in Figure 2.3. 

 

2.6.1 Believe the Positive (BP) 

For the BP strategy, consider the following: Test 1 is administered to each subject (with 

continuous test result 1X ). If the test result is high (i.e., 1 1X   ), then stop. The subject 

will be considered positive for the disease. Do not do the second test. If the test result is 

low (i.e., 1 1X   ) then administer the second test (with continuous test results 2X ). If 2X  

is high ( 2 2X   ) then the subject will be considered positive for disease. If 2X  is low 

( 2 2X   ) then the subject will be considered negative for the disease. In this case, BP 

diagnoses patients as positive if either Test 1 or Test 2 comes back positive (Shen, 2008). 

 



www.manaraa.com

    22

2.6.2 Believe the Negative (BN) 

Next, consider the BN strategy. Test 1 is measured on each subject (with continuous test 

result 1X ). If the test result is low (i.e., 1 3X   ), then stop. The subject will be considered 

negative for the disease. Do not administer Test 2. If the test result is high (i.e., 1 3X   ) 

then administer Test 2 (with continuous test results 2X ). If 2X  is high ( 2 4X   ) then the 

subject will be considered positive for disease. If 2X  is low ( 2 4X   ) then the subject 

will be considered negative for the disease.  

Figure 2.3: BP and BN Diagnoses 

 

 

2.6.3 Visual Representation of BP and BN  

Refer to Figure 2.3; this illustrates the BP and BN strategies. The BP strategy claims a 

positive diagnosis when either test is positive, while the BN strategy claims a positive 

diagnosis only when both tests are positive (Shen, 2008; Marshall, 1989). While Figure 

2.3 portrays the rules of the combination of tests, it does not portray the OOP (Shen, 

2008). 
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2.7. Univariate Cases in the Literature 

The estimation of OOP for YI has been examined in recent literature for the single test 

case. Jund et al. (2005) looked at normal and log-normal data with equal variances across 

groups and suggested that selecting the OOP by means of the value that maximizes  

Se + Sp*R works best when the difference between the two means (one for each group) 

and sample size are high and when the weighting parameter (R) for the Sp is close to one. 

This was found to be “asymptotically non-biased” and have acceptable coverage as long 

as the sample size in each group is greater than 50. 

 Schisterman & Perkins (2007) looked at finding a confidence interval for the OOP 

as well as the YI using several bootstrapping methods. While both may be calculated and 

may come to different conclusions, the OOP CI is the result of most interest for this 

research. The derived CIs had less appropriate coverage and wider intervals than those 

generated via the delta method. However, these CIs rely heavily on distributional 

assumptions. If the assumptions are not met, non-parametric methods are more robust 

(such as bootstrapping). 

 Schisterman et al. (2005) extended the current methods for calculation of the YI 

and an OOP from a single sample to a pooled sample, suggesting that pooling samples 

can save cost and is robust in regards to the estimates of the optimal threshold and 

corresponding YI. Skaltsa et al. (2010) looked at varying the cost parameter in the GYI, 

and found that when r was high the estimators had more bias; r was also found to affect 

the estimation of the Se and Sp, selecting estimation values it otherwise would not for the 
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r = 1 case. Additionally, they found that parametric estimators had less variability than 

empirical estimators. 

 Fluss, Faraggi, & Reiser (2005) compared methods of obtaining optimal 

thresholds from four different methods: normally distributed data, transformed to normal 

data using a Box-Cox transformation, empirical, and kernel smoothing in terms of bias 

and root mean square error (RMSE). They found the empirical estimate to be the least 

accurate method (especially for smaller sample sizes), while the transformed to normal 

appeared perform equally as well as any others so long as the data could be adequately 

transformed, and works just as well as the kernel method when sample sizes is greater 

than or equal to 50. 

     

2.8. BP and BN Cases in the Literature 

This research focuses on the diagnostic accuracy of OOPs. The ultimate goal is to obtain 

an OOP for a sequence of tests and determine its accuracy, comparing the effect of 

different parameters that effect the estimation and as compared to a simple empirical 

approach, while limiting the bias and obtaining accurate coverage. Two tests, as opposed 

to one, may lead to a more complex clinical interpretation, but may be more reliable and 

“improve diagnostic reliability” (Marshall, 1989). Thompson (2003) mentions that, with 

these sequential testing strategies, the second test could be the same test as Test 1, just 

administered later in time. The latter, according to Politser (1980), may be especially true 

if the initial test is unreliable and needs to “be repeated”. 
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 Marshall (1989) discusses the predictive values of diagnostic tests. He states 

that the rules for combining the two tests “do not necessarily have better predictive values 

than a single test; whether they do may depend on the association between test 

outcomes.” If tests are associated, this may alter the decision of when to conclude that 

patients are diseased or not. The predictive values also shift when more than two tests are 

combined sequentially. 

 Another issue to address for these strategies is identifying which set of tests are 

best to determine optimality of diagnosis. Researchers may have a host of tests to select 

from. Ahmed, McClish, & Schubert (2011) looked at accuracy of diagnosis of sequential 

tests while taking the cost into account. Shen (2008) suggests choosing tests “that have 

opposite correlation signs between the diseased and non-diseased populations.” She 

suggests that this difference adds another dimension to the distinction between the two 

populations. 

 While several studies have been published using sequential strategies, no study 

mentions the selection and evaluation of an optimal threshold for these strategies. Zöller, 

Burkard, & Schäfer (1991) utilized a modified BP strategy when examining the effects of 

using western blot to diagnose Lyme Borreliosis. For this example, bands on the 

immunoblots were inspected and a positive diagnosis was made when both bands were 

present and one band exceeded the respective optical density (OD) critical level. This was 

done for various cutoff values. Se values were compared for Sp values above 90%, and 

“the couple of critical OD levels for the two bands was chosen to obtain the maximum Se 

under the restricted Sp in the sample.” 
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 Baccouche et al. (2009) also utilized the BP strategy to assess the diagnostic 

synergy of cardiovascular magnetic resonance and endomyocardial biopsy in patients 

with positive acute chest pain but without significant coronary artery disease. The 

approach for this data example was as follows: the patient was considered being 

troponin-positive if at least one of the procedures could establish a diagnosis; if neither 

procedure yielded a diagnosis, or if they did not yield the same diagnosis, the patient was 

considered not troponin-positive.  

 Dreher et al. (2004) looked at the validity of p27kip1 and Gleason scores for 

biopsies as predictive tests with both the BP and BN strategies for the Gleason scores of 

the surgical specimen for the diagnosis of prostate cancer. Note that these were binary 

tests, not continuous tests. Rather than using thresholds for each of the tests, prediction 

was used, but details were not given. Results, however, showed that the combination of 

predictors was not any more reliable than the Gleason score alone. 

 Cury et al. (2006) used BP rules to combine stress first-pass perfusion magnetic 

resonance imaging and delayed enhancement magnetic resonance imaging to assess the 

diagnosis of coronary artery disease. They found a slightly better diagnostic accuracy for 

the combination of tests than for just a single test (first-pass perfusion magnetic 

resonance imaging). 

 Ahmed, McClish, & Schubert (2011) looked at BP and BN sequential strategies, 

accounting for cost, to diagnose diabetes from BMI and fasting glucose levels in the Pima 

Indian population. It was found that the BN strategy had a lower FPR than the BP 

strategy for their data example. However, optimal thresholds were calculated by means of 
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a grid search rather than methodologically. Leeflang (2008) noted that when the 

optimal threshold is selected in a data-driven method, using the YI, the corresponding Se 

and Sp estimates are overestimated. 

 Thompson (2003) used a prostate cancer example from the CARET study 

involving BP rules in which two scenarios were analyzed for repeated tests: the same 

threshold used for everyone at each testing point, but the threshold can change at each 

follow-up (non-adaptive) and allowing the threshold corresponding with the conditional 

percentiles to differ across individuals and/or follow-ups (adaptive). Although these 

methods of calculating thresholds were mentioned, no guidance was given as to which 

one to choose. 

 Lastly, Shen (2008) defined and implemented both a BP and BN strategy on a 

dementia Alzheimer’s disease in African-American patients. The two tests are continuous 

neuropsychological tests (Word List Learning and Word List Delayed Recall and 

Recognition), and the outcome was dementia. Again, thresholds were calculated by a grid 

search rather than a methodological approach. She also suggests that the choice between 

BP and BN may depend on the underlying distribution of the data as well as the signs of 

the correlation between the two groups. 

 

2.9. Summary 

In this chapter, the choice of an OOP for the univariate (single test) scenario as well as 

the sequential testing strategies were defined and explained. According to Shen (2008), 

some literature on detecting an OOP based on the AUC is available. However, as stated 
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previously, little is known regarding the selection of an OOP for the case when two or 

more continuous tests are available and are chosen to be used in tandem. The research in 

this paper will include the development and evaluation of an OOP for each of the two 

sequential testing strategies detailed above. 

 



www.manaraa.com

    29

3 Methodology 

 

In this chapter, methods for determining the optimal operating point (OOP) in a 

sequential testing strategy scenario will be examined by means of simulation studies. 

Two sequential testing strategies will be considered: “Believe the Positive” (BP) and 

“Believe the Negative” (BN). To describe the properties of the OOP and situations in 

which the method of choosing the OOP performs best, evaluation measures must be 

considered. For this simulation study, bias, root mean square error (RMSE), percent 

overestimation of Se and Sp, 95% simultaneous confidence intervals (SCIs), and 

confidence regions (CRs) will be evaluated. Additionally, comparison to the empirical 

approach for determining an optimal threshold will be done by calculating the bias of the 

empirical OOPs, corresponding Se and Sp, and overestimation of Se and Sp. The 

simulated study will be performed in SAS (SAS Institute, Cary, NC). 

 

3.1. Basic Notation 

Consider two groups of patients: those without disease (healthy), referred to as H, and 

those with disease (disease), referred to as D. Let X be a test’s measure for truly diseased 

and Y be a test’s measure for truly healthy. Assume X and Y each independently follow a 

bivariate normal distribution, or can be so transformed such that 

2 2
1 2 1 1~ ( , , , , )i D D D D DX BVN      and 2 2

1 2 1 2~ ( , , , , )j H H H H HY BVN      , where μ 

represents the means associated with each test for each group, σ2 represents the variance 

for each test for each group, and ρ represents the correlation between the two tests within 
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each group. The numerical subscripts represent the corresponding test with i = 1, …, 

Dn , j = 1, …, Hn . Within tests, assume each group independently follows a normal 

distribution, such that the healthy patients follow a standard normal distribution for each 

test 1 2 1 20, 0, 1, 1
j j j jH H H H       . The entire set of simulated parameters will be 

denoted as 1 2 1 2 1 2 1 2( , , , , , , , , , )H H D D H H D D H D           .  

 There were 144 combinations of parameters available for the simulation studies 

for each sequential testing strategy, which will be defined in the next chapter. Varied 

parameters include values for the AUC for each test (a function of the population means 

and standard deviations), the ratio of standard deviations between the two groups (b), 

correlation between the two tests for each group, total sample size (TSS), and the 

allocation (k) of H and D within the TSS. The total sample size is H DTSS n n  , where  

 D Hn kn  (3.1) 

The ratio of standard deviations is denoted as bi = iH

iD




, where i represents the respective 

test number (1 or 2). Under the normality assumption, the area under the ROC curve 

(AUC) for the tests, are  

 
21

i
i

i

a
AUC

b

 
  
  

  (3.2) 

1AUC  and 2AUC for the first (1) and second (2) tests respectively, where 

( ) /i iD iH iDa      (i represents the respective test number).  
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 Note that, for simplicity, we assume that the healthy group follows a standard 

normal distribution for each test, or that the means and standard deviations for the 

multivariate distribution for both tests were zero and one respectively. In order to 

calculate the means and standard deviations for the disease group, we must use the AUC 

and the assumed mean values. The mean for the disease group for test i is calculated as 

 2 11 ( )iD iD i i iHb AUC      . (3.3)  

The standard deviations for the disease groups for each test is calculated based on the 

desired values for bi such that iH
iD

ib

  . 

 The optimal threshold for BP will be notated as ( 1 2,  ) while the optimal 

threshold for BN will be notated as ( 3 4,  ). 

 

3.2. Sequential Testing Formulae 

Recall that we are trying to maximize the GYI, so our formulae will be based upon this. 

The derivation of each set of formulae will be described in the following subsections. Let 

the GYI be the objective function from which we derive the OOP. The GYI is formally 

defined as 

 max{ ( ) ( ( ) 1)} max{ ( ) ( )}GYI Se c r Sp c TPR c rFPR c     , (3.4) 

where the constant r is a function of the misclassification cost and prevalence in order to 

weight the Se and Sp; note that when r = 1, GYI=YI. 
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3.2.1 BP System of Equations 

Ahmed, McClish, & Schubert (2011) show that the FPR and the TPR for the BP strategy 

are given by 

 1 2 1 , 2 1 2( , ) 1 ( , )BP
X H X HFPR F      (3.5) 

and  

 1 2 1 , 2 1 2( , ) 1 ( , )BP
X D X DTPR F     , (3.6) 

where 1 , 2 1 2( , )X H X HF   and 1 , 2 1 2( , )X D X DF   are the cumulative distribution functions. In 

this research we will assume they represent the bivariate normal distribution. The 

subscripts 1H and 2H represent test 1 and test 2 for those without disease (H), and 

subscripts 1D and 2D represent test 1 and test 2 for those with disease (D). Additionally, 

1 represents the threshold associated with test 1, while 2 represents the threshold 

associated with test 2. For the BP case, we then have  

 1 , 2 1 2 1 , 2 1 2[1 ( , )] [1 ( , )]BP
X D X D X H X HGYI F r F       . (3.7) 

 

3.2.2 BN System of Equations  

Ahmed, McClish, & Schubert (2011) show that the FPR and the TPR for the BN strategy 

are given by 

 3 4 1 3 2 4 1 , 2 3 4( , ) 1 ( ) ( ) ( , )BN
X H X H X H X HFPR F F F          (3.8) 

and  

 3 4 1 3 2 4 1 , 2 3 4( , ) 1 ( ) ( ) ( , )BN
X D X D X D X DTPR F F F         . (3.9) 
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The subscripts represent the same tests and disease groups as they did for the BP 

strategy, 3 represents the threshold associated with test 1, and 4 represents the threshold 

associated with test 2. The GYI for the BN strategy is then 

 1 3 2 4 1 , 2 3 4

1 3 2 4 1 , 2 3 4

[1 ( ) ( ) ( , )]

[1 ( ) ( ) ( , )]

BN
X D X D X D X D

X H X H X H X H

GYI F F F

r F F F

   

   

   

   
. (3.10) 

 

3.3. Newton-Raphson (NR) 

Generally, a maximum can be found by taking derivatives of equations, setting the 

equations equal to zero, and solving for the necessary parameter(s). For both GYIBP and 

GYIBN, this process yields a set of two complex nonlinear functions with two unknown 

parameters. Iterative procedures are necessary since an explicit solution cannot be 

attained for the unknown parameters. The Newton-Raphson (NR) method is an iterative 

method to find roots of functions utilizing both first and second derivatives, also known 

as the gradient (f) and the Hessian (H) matrices respectively, for real valued functions. 

This method does so by using the Taylor Series of the function, of which it is based upon. 

Suppose you have two equations, ( , )f x y and ( , )g x y . An approximation of the Taylor 

Series expansion for ( , )f x y  is given by: 

 
(0) (0)

(0) (0)

(0) (0)

[ , ]

2

[ , ]

( , )
( , ) ( , )

( , )
( ),

x y

x y

df x y
f x x y y f x y x

dx

df x y
y O

dy

      

   Δ

 (3.11) 
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where 
x

y

 
   

Δ , O  refers to the remainder due to the approximation (truncation) of 

the Taylor Series polynomial, and (0) refers to the starting value. The expansion for 

( , )g x y  is similar. Note that in equation (3.11), the partial derivative of ( , )f x y  with 

respect to x represents the variation due to x, while the partial derivative of ( , )f x y with 

respect to y represents the variation due to y. Also 
(0)

(0)

xx

yy

   
      

r , and ( ) f r 0 , so we 

can set equation (3.11) and its counterpart for ( , )g x y equal to zero. Then equation (3.11) 

becomes 

 
(0) (0) (0) (0)

(0) (0)

[ , ] [ , ]

( , ) ( , )
( , ) ( , )

x y x y

df x y df x y
f x x y y f x y x y

dx dy
         . (3.12) 

 Because equation (3.12) (and it counterpart expansion ( , )g x y ) are two complex 

linear functions with two unknowns, a closed form solution does not exist. In order to use 

the NR algorithm, a gradient and a Hessian matrix must be defined. For our purposes, the 

gradient is comprised of ( , )f x y  and ( , )g x y , referred so as our sequential testing system 

of equations. Taking partial derivatives of the gradient to obtain the Hessian yields a total 

of four partial derivates, defined as 

 

( , ) ( , )

( , ) ( , )

df x y df x y

dx dy

dg x y dg x y

dx dy

 
 
 
 
 
 

H . (3.13) 

The NR algorithm is then 

 
0 ( , )

0 ( , )

f x y x

g x y y

     
           

H , (3.14) 
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or reduced, 

 (0) (0) 0 f H Δ , (3.15) 

where 
( , )

( , )

f x y

g x y

 
  
 

f . This then implies that 

 1
1 ( ) ( )k k k k


  x x H x f x , (3.16) 

where k

x

y

 
  
 

x , and k = 0, 1, …, k refers to the iteration number. The left hand side 

represents the next “step” in the algorithm, while the right hand side represents the 

computations and the previous solution. This algorithm iterates (H is calculated at every 

iteration using the previous estimate and used in solving the system of equations) k times 

until we achieve convergence. More specifically, we iterate until the difference between 

the current estimate 1kx and the previous estimate kx  is less than an a priori set 

convergence criterion. 

 

3.4. Newton-Raphson (NR) with Ridging 

One requirement for the use of the NR formula is that the Hessian matrix, or the matrix of 

second derivatives, must be positive definite. This means that the matrix is symmetric 

with only positive eigenvalues. In other words, a square matrix A is positive definite if 

the quadratic form x’Ax is greater than zero for all non-zero vectors of x. If this condition 

does not hold, then the inverse cannot be calculated. Positive definiteness can be 

calculated in ways including, but not limited to, calculating all the eigenvalues and 
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checking to see if they are all positive, calculating the determinants of the 2 upper left 

matrices, or by using a Cholesky decomposition. 

 If the Hessian matrix is not positive definite, or even nearly so, then the usual NR 

method cannot be used. It became apparent while setting up this research that the NR 

method was not converging as often as it should (compared against a grid search). There 

were several instances when the number of times we found an OOP was significantly less 

for the NR method as compared to a grid search. These problems seemed to disappear 

once the algorithm was switched to the Newton-Raphson with ridging method, leading to 

the conclusion that the Hessian related to the GYI may not satisfy the positive-definite 

requirement of the NR method. 

 A related alternative method is Newton-Raphson ridge optimization which works 

around this problem by adding a multiple of the identity matrix to the Hessian. This adds 

a positive value (called the ridge parameter) to the diagonal of the Hessian, in turn 

making it positive definite. The larger the ridge, the more optimization problems there are 

(SAS 9 Documentation). The updated NR algorithm would then look like 

 1
1 [ ( ) ] ( )k k k k 
   x x H x I f x , (3.17) 

where α represents the ridge parameter and is large enough to make the matrix positive 

definite and I represents the identity matrix. 

  

3.4.1 Non-Linear Programming using SAS PROC NLP 

Simulation parameters were generated using PROC NLP in SAS. This procedure uses 

optimization techniques to minimize/maximize one or more continuous nonlinear 
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functions. Using Newton-Raphson with ridging, OOPs were determined by 

maximizing the GYI. Because the multivariate NR is very sensitive to the starting values, 

our starting value was determined by using a coarse grid search on the interval [-4, 4] by 

increments of 0.1.  

 A grid search is considered to be a brute force method in which the specified 

parameter space is covered by a specified precision, or interval. The statistics of interest 

are calculated for every step in every n-dimensional direction across the grid space. This 

is not necessarily efficient or precise, but does yield a general overview of the objective 

function. In this case, since we are maximizing the GYI, the OOP from the grid search 

method would be the pair of thetas that yields the largest GYI. This process can be very 

time consuming and computationally expensive depending on how large the parameter 

space is or how fine the search increment is. 

 PROC NLP was used to select a starting value using a grid search rather than 

programming a specific value. According to the SAS documentation, providing the grid 

search as a starting point allows the procedure to compute the objective function at each 

grid point and select the “best”, or most feasible, point as a starting value for the 

optimization technique by means of a rough grid of the parameter space. 

 For this study, the gradient and Hessian matrices are estimated using finite-

difference approximations rather than being explicitly computed to save computation 

time, although the advantage of PROC NLP is that you can select either the analytic 

solution or supply the exact derivatives. See Appendix A for the explicit gradient and 

Hessian formulae for each sequential testing strategy. Additionally, PROC NLP selects 
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the best ridge parameter automatically. This was chosen rather than comparing models 

with different, a priori selected ridging values to decrease the simulation combination 

count. 

 

3.5. Bias and Root Mean Square Error (RMSE) 

To assess the accuracy of the simulation study in regards to the estimation of the OOPs, 

bias and root mean square error (RMSE) will be computed by comparing the true 

threshold to the estimated OOPs. 

 Bias is a measure of the difference between the true and estimated value of a 

parameter, or in other words, a measure of accuracy. This specifically measures the 

magnitude in which the estimated OOP  
1 2( , )  does not match the true OOP 1 2( , )  . 

Bias will be calculated as  

    
1 2 1 21 2(( , )) ( , )bias         . (3.18) 

where bias is calculated separately for the thresholds associated with each test. Bias is 

calculated similarly for the BN and BP strategies. Positive bias indicates that the estimate 

tends to be larger than the true value, while negative bias indicates that the estimate tends 

to be smaller than the true value. In this dissertation, we are interested in the bias of the 

OOP as well as the corresponding Se and Sp. For the simulation study median bias will 

be reported. 

 Another common measure of differences between estimates and true values is the 

RMSE, which incorporates bias and variance simultaneously. RMSE, which is the square 

root of the MSE, will be calculated as 
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1 2

2 2
1 2 1 2

( , )
(( , )) (( , ))RMSE bias

 
      . (3.19) 

The RMSE is sometimes preferred over the MSE for scenarios with many leading zeros 

as it is easier to understand while also retaining the units. 

3.6. Simultaneous Confidence Intervals (SCI) and Confidence Regions (CR) 

To assess the precision of an estimate, simultaneous confidence intervals (SCIs) and 

confidence regions (CRs) will be used. In the multivariate case, estimated parameters 

may be correlated; that is, the estimation of one threshold may depend on the estimation 

of another. In the case of the OOP, the increase/decrease in the threshold for test one may 

affect the increase/decrease in the threshold for test two. Additionally, as the number of 

parameters, p, increases, the probability that each of the univariate, or “one-at-a-time”, 

confidence intervals accurately covers the space decreases from the set confidence level. 

 Bonferroni SCIs are set up like Wald-type confidence intervals (Estimate ± 

z*(Standard Deviation)), where z refers to the confidence level based on a standard 

normal distribution. We alter z in this case such that 
1

2

*
p

z z 


 , where α represents the 

confidence level of interest and p represents the number of parameters we are estimating; 

this is known as the Bonferroni correction. The Bonferroni SCIs are calculated with 

limits  

  * var( )SCI z θ θ , (3.20) 

where θ represents the vector of estimated threshold components (for both BP and BN, 

the dimensions of this vector are 2×1). 
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 This Bonferroni correction adjusts for the multiplicity in the interval 

estimation. In this dissertation, p = 2, as the OOP for each sequential strategy has two 

components, one for each test. Typically, as p gets larger, the SCIs are more 

conservative. Widths of these SCIs are calculated by subtracting the lower bound from 

the upper bound of a particular set. It is worth noting that there are other methods of 

constructing SCIs such as Scheffé (all possible comparisons) or Tukey (all pairwise 

comparisons); as we are only doing a small number of a priori set comparisons, 

Bonferroni was the chosen method. Selection of a method depends ultimately on what 

one is actually interesting in capturing with the SCI. 

 A better way to describe confidence in a multivariate setting is the use of a 

confidence region, or a confidence ellipse. Used commonly in multivariate statistics, a 

parametric 100(1 )% confidence region for a vector of estimates θ is determined by all 

θ such that  

  1

,( ) ' ( ) ( )p n pn S F 
  θ θ θ θ , (3.21) 

where n represents the total sample size, S represents the variance-covariance matrix, and 

F represents the CDF for the F distribution. 

 Coverage for both the SCIs and CRs is calculated as the percentage of times the 

true parameter value falls within the respective confidence bounds. The closer your 

coverage is to your set confidence level the more accurate your estimate is. When the 

coverage is larger than the set confidence level, the interval/region is considered 

conservative; likewise, when the coverage is less than the set confidence level, the 

interval/region is considered permissive (Dodge et al., 2003). 
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3.7. Estimating a Variance (and Covariance) 

Once we obtain estimates for the threshold pairs, or the OOPs, variance estimates are 

needed to obtain simultaneous confidence intervals, confidence regions, and RMSE 

estimates. As the BP/BN equations are too complex to obtain a closed solution for the 

thresholds, the same holds true for calculating a variance estimate. 

 A common method to estimate variance is the bootstrapping technique. 

Bootstrapping was first described by Efron & Tibshirani in 1979. This method is 

commonly used when the distribution of the estimate is unknown. Within each simulated 

dataset, we will sample B replicates, or bootstrap samples, separately for the H and D 

groups. This can be done using several sampling techniques. We will implement 

bootstrapping with replacement using unrestricted random sampling, so some 

observations may be included more than once, while some observations may not be 

selected at all. 

 Within each bootstrap sample, we can calculate the B OOPs, and then calculate a 

variance for each theta component of the OOP as well as the covariance between the two. 

Schisterman and Perkins (2007) suggest that this method performs no worse than the 

delta method for estimation of the optimal threshold when a single test is used, while 

being similar to or outperforming other method, such as the percentile method or BCa 

bootstrapping. While this method involves using the mean OOP values across the B 

samples, we altered it slightly to use the actual simulated OOPs. The percentile method 

involves taking all B bootstrap sample, calculating the parameter of interest, ranking the 

results numerically, and finding the 
2


 and 1

2


  percentiles; this represents your 
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confidence intervals. The bias-corrected and accelerated (BCa) bootstrapping method 

improves the percentile method by correcting for bias and for rate of change of the 

standard error with the estimated parameter value “with respect to the true parameter 

value” (Zhou, Obuchowski, & McClish, 2011; pg. 479). 

3.8. Assessing Normality 

There are several methods available to assess the normality of a random variable. One 

simple thing is to compare the mean and the median and see how close they are. This is 

informative because, if the data are normally distributed, the mean should equal the 

median. The further the data are from this assumption, the further apart these statistics 

will be. Skewness, or the measure of symmetry,, is defined as 

 
 

3

3/2
2

E ( )

E ( )

X

X





  

  
. (3.22) 

Kurtosis, or the measure of “peakedness” of a distribution, is defined as 

 
 

4

2
2

E ( )

E ( )

 

 

  

  
. (3.23) 

The closer these values are to zero, the more normal a distribution appears. To view the 

distribution of a variable, we can construct a histogram. If the data are normally 

distributed, the histogram should be symmetric about the average, or center. Additionally, 

a normal quantile plot, which plots the normal quantiles against the the quantiles of the 

distribution of the variable, should follow the line y = x if the data are normally 

distributed. 
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 Several formal statistical tests are also available to assess normality. For this 

research, we will consider the Kolmogrov-Smirnov and Shapiro-Wilk tests for normality. 

Kolmogrov-Smirnov test statistic is defined as  

 sup ( ) ( )nG G   , (3.24) 

where G represents the empirical distribution function (EDF) and n represents the number 

of independent observations (Massey Jr., 1951). The Shapiro-Wilk test statistic is defined 

as  
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, (3.25) 

where θ(i) represents the ordered values from smallest to largest and ai represents the 

constants generated from the means, variances, and covariances of the order statistic of 

an n-sized sample from a normal distribution (Shapiro & Wilk, 1965). 

 To assess for normality of the theta components of the OOP for a subset of 

parameters, all measures and methods described in this section will be examined, and an 

overall conclusion will be made on the normality of the variable. 

 

3.9. Empirical Estimates 

The OOP for the sequential testing strategies will also be estimated empirically. This 

method is based off of the available data, so that the corresponding ROC curve will be 

more of a step curve than a smooth curve. Assume continuous data, patients are 

considered negative (healthy) if test 1 and test 2 both yield a negative result for BP. 
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Creating indicator variables for both tests, the indicator portion of equation 2.1 then 

becomes  

 
1 11 1 2 2 1 1 2 2

,
n nH D

T c T c T c T cj jHj i Hj i Dj i Dj i

I I I I                         

 
  

 
. (3.26) 

Expanding these to create pairs to be plotted, it is computationally easier to count those 

with disease rather than those that are healthy. Counting the number of patients that are 

positive (with disease), we get 

 

 1, 2 1, 2

1 11 1 2 2 1 1 2 2

( ), ( )

, ,

n ni i i iH D

n nH D

H DT c T c T c T cj jHj i Hj i Dj i Dj i

H D

F c c F c c

n I I n I I

n n

                         



    
 
 
 
 

 (3.27) 

which simplifies to 

 

 1, 2 1, 2

1 11 1 2 2 1 1 2 2

( ), ( )

1 1
1 ,1 .

n ni i i iH D

n nH D

T c T c T c T cj jHj i Hj i Dj i Dj iH D

F c c F c c

I I I I
n n                         



 
   

 

 (3.28) 

  

 Looking at the BN strategy, patients are considered positive (with disease) only 

when both tests are positive. To count these, the expanded indicator portion of equation 

2.1 becomes  

 
1 11 1 2 2 1 1 2 2

,
n nH D

T c T c T c T cj jHj i Hj i Dj i Dj i

I I I I                         

 
  

 
. (3.29) 

 Expanding these to create pairs to be plotted, we get 
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 1, 2 1, 2

1 11 1 2 2 1 1 2 2
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 (3.30) 

 For both the BP and BN empirical formulae, the OOP would be selected as it was 

for the univariate case (i.e. the threshold yielding the highest YI is selected as the OOP). 

 While no distributional assumptions are placed on the data, this method is 

obviously very cumbersome. This method does not extrapolate outside of the dataset as a 

smooth ROC could in finding the OOP. Consequences of this could be 

over/underestimation of the Se, Sp, or both, as well as inaccuracy of the actual OOP due 

to a limited range of values available for the threshold calculations and corresponding 

diagnostic statistics. Additionally, Schisterman & Perkins (2007) mention that when 

selecting an optimal threshold for the single test case, it is possible that more than one 

threshold could be selected based on the YI alone. Since this is possible when calculating 

OOPs from the data available, the OOP with the largest Se was chosen as the optimal 

threshold. 

 

3.10. Determining Legitimate BP/BN Strategies 

During this research, it became obvious that in solving for the OOP, there were scenarios 

in which only one test was necessary. For example, the threshold for the second test 

might be so low that essentially everybody would be classified based on the result of the 

first test. Due to this, before the simulation study could be performed, valid BN strategies 

needed to be identified based on the population parameters. The method described above 
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using PROC NLP was used to determine valid strategies, with starting values being a 

coarse grid search from -4 to 4 by 0.2. For both BP and BN, a strategy will be considered 

“legitimate” if the threshold value for test 1 falls within 

1 1 1 1( 1.645 , 1.645 )H H D D        and the threshold value for test 2 falls 

within  2 2 2 21.645 , 1.645H H D D       . These constraints are based on the normal 

distribution and identify values that are extreme for that distribution. When allocation of 

patients across the H and D groups favors D, we would be excluding more people. 

 

3.11. Determining Valid OOPS 

Similar to the manner in which we determined legitimate strategies, bounds were 

employed to determine valid OOPs. For both BP and BN, an OOP will be considered 

valid if the threshold value for test 1 falls within  1 1 1 11.96 , 1.96H H D D        and 

the threshold value for test 2 falls within  2 2 2 21.96 , 1.96H H D D       . Note that 

within each legitimate strategy, we were less conservative when specifying bounds for 

the OOP, allowing more OOPs estimated from simulated data to be accepted. 

 

3.12. Prediction of Total Sample Size and SCI Widths 

A common question in research studies from investigators is “how large of a sample do I 

need?” For this research, someone who wants to design a study to determine the OOP for 

a given sequential testing strategy may want guidance for selecting an appropriate sample 

size. While a derived formula exists for estimating a sample size for the single test case 

(Skaltsa et al., 2010), nothing is available for the sequential testing strategy scenario. We 
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do not attempt try to derive an exact formula in this research, however we aim to try 

and provide guidelines based upon the simulation data. 

 For each strategy (BP and BN), it was of interest to predict both an overall sample 

size and the SCI widths for each test using the data from the simulations. SCI widths 

were considered rather than the CR areas because of the interpretability; for clinicians, 

widths are more relevant and applicable than areas due to the reduced dimensionality. 

Because of the abundance of data, we split the data equally into two parts: an estimation 

data set and a validation data set. The first 500 runs within a specified parameter set were 

used as the estimation dataset, while the latter 500 runs were assigned to the validation 

dataset. Recall from Section 3.2 that we have 144 parameter combinations for each 

testing strategy. With 1,000 runs in each, we have a maximum 72,000 valid observations 

in both the estimation and validation datasets for both BP and BN. 

 The first outcome of interest is SCI width, with a separate regression model for 

each OOP component (i.e. separate models for the width of the SCI for the first and 

second components for the OOP, which is equivalent to the widths for each test). To 

predict SCI width for each test and strategy, ordinary least squares (OLS) regression was 

performed using three different sets of predictor variables: 

a) M1: TSS, k, and simulated values for 

1 2 1 2 1 2 1 2( , , , , , , , , , )H H D D H H D D H D           ; 

b) M2: TSS, k, and simulated values for AUCs, b, and correlations; and 

c) M3: TSS, k, and simulated values for correlations, a’s and b’s used to calculate 

the AUC (defined in Chapter 2). 
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Note that the variables in M2 and M3 are actually just transformations of those in M1. 

Models including interactions between TSS and k as well as AUC and b were also 

included where appropriate. Comparisons were made on the basis of R2 across models; 

since the sample size was so large, all parameters were significant, so an increase in R2 

was a more reliable measure of whether interactions are important. 

 Similarly, regression equations for predicting TSS were constructed. Again,  OLS 

regressions were performed in SAS PROC REG with a different prediction equation for 

each set of predictor variables: 

a) M1: SCI width, k, and simulated values for 

1 2 1 2 1 2 1 2( , , , , , , , , , )H H D D H H D D H D           ; 

b) M2: SCI width k, and simulated values for AUCs, b, and correlations; and 

c) M3:SCI width, k, and simulated values for correlations, a’s and b’s used to 

calculate the AUC (defined in Chapter 2). 

 To further assess the models obtained from the estimation dataset, we used the 

parameter estimates obtained from the models as regression coefficients for the validation 

dataset. This technique allows for a generalization of the model to an independent 

dataset. The coefficient of determination, R2, was used to determine which model 

performs best within each set of OLS regressions for the SCI widths, as well as the OLS 

regressions for the TSS equations. 
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4 Simulations 

 

This research aims to identify the optimal operating point to distinguish between two 

populations (healthy (H) and disease (D)) under two sequential testing strategies 

scenarios. In this chapter, the OOP will be identified and properties will be described in 

terms of bias, root mean squared error, over/under estimation of the OOP as well as the 

corresponding Se and Sp, simultaneous confidence interval widths, confidence region 

area, percent coverage of both the simultaneous confidence intervals and confidence 

regions, and a comparison to the empirical approach in terms of bias and over/under 

estimation of the OOP as well as the Se and Sp. The effects of simulation parameters on 

these measures are examined; we also compare the two strategies. 

 

4.1. Strategy Properties 

In this section, some parameters that could affect the estimation of OOP for each of the 

testing strategies are defined. We assume that the healthy patients follow a standard 

normal distribution. Upon setting this assumption and selecting varied values for 

simulation parameters identified in Table 4.1, calculations for additional parameters can 

be performed, such as the means for the diseased groups for each test as described in 

chapter 3.  
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Table 4.1: Population Parameters 1,2,3 

Parameter Values 

b (0.5, 0.5), (1.0, 1.0), (0.5, 1.0), (1.0, 0.5), (1.5, 1.5), (1.0, 1.5), (1.5, 1.0)

AUC (0.7, 0.7), (0.75, 0.85), (0.9, 0.9) 

ρ (0.0, 0.0), (0.5, 0.5), (0.25, 0.5), (0.5, 0.25) 

r  0.5, 1, 2 

1 iH
i

iD

b



  

2  represents the correlation between the tests within a disease classification group 
3 r represents the weighting factor in the GYI 
 
 
 The AUC was selected as follows: (0.7, 0.7) and (0.9, 0.9) were chosen such that 

both tests had fair/moderate accuracy or high accuracy, and that both tests were 

equivalent in this accuracy. An AUC of (0.75, 0.85) was chosen such that the second test 

was slightly more accurate than the first test but so that the differences in the accuracies 

were not large This parameter is important as it influences the shape of the ROC curve of 

the individual tests. Formulae to obtain the values for 1D and 2D  written in terms of the 

AUC and b, are defined in section 3.1. 

 The ratio of standard deviations, b, was selected as this parameter also influences 

the shape of the ROC curve irrespective of the AUC. Two curves could have an identical 

AUC but look very different if this ratio varies. The choice of b = 1 assumes the spread of 

the test results for the disease and healthy groups are identical; b < 1 assumes that the test 

results for the disease group has more variability than those for the healthy group; lastly, 

b > 1 assumes that the test results for the disease group has more variability than those for 

the healthy group. In order to have one value from each group, b of 0.5, 1, and 1.5 was 
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chosen. Figure 4.1 shows three different curves, one for each value of b; all three 

curves have the same area (AUC = 0.8). 

Figure 4.1: ROC Curves and b 

 

 Correlation was varied to either assume independence between the two tests, for 

both the healthy and disease groups, by letting ρ = (0.0, 0.0), or allow some correlation  

(ρ = (0.25, 0.5), (ρ = (0. 5, 0.25), or (ρ = (0.5, 0.5)). Additionally, values of r, or the 

weighting parameter, used in the calculation of the GYI, were varied for the population 

parameter tables. The parameter r specifies a summary of cost and prevalence to weight 

the sum of the TPR and the Sp of the GYI. Values of r > 1 result in a higher weight for 

specificity versus sensitivity in the GYI, while values of r < 1 result in lower weight. 
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4.2. Population Parameters Results 

As mentioned in section 3.8, during this research it became obvious that while solving for 

the OOP, there were scenarios in which only one test was necessary to diagnose disease. 

For example, the threshold for the second test might be so low that essentially everybody 

would be classified based on the result of the first test. This was verified with the use of a 

grid search, or a brute force method in which OOP was assessed by calculating the GYI 

for many test values spanning the entire range of possible values. Due to this, before the 

simulation study could be performed, legitimate strategies needed to be identified based 

on the population parameters. 

 

4.2.1 Identifying Legitimate Strategies 

Consider the BP strategy. Strategies are considered “legitimate” if 1 falls within 

( 1 11.645H H   , 1 11.645D D   ) and 2 falls within ( 2 21.645H H   , 

2 21.645D D   ). These constraints are based on the normal distribution and identify 

values that are extreme for that distribution. The same was done for the BN strategy. 

Recall that the objective is to maximize the GYI, so if a single test performs better than a 

sequential testing strategy in terms of the GYI, this would be more appropriate. For times 

where both strategies are legitimate, we assess the values of the GYI and select the 

strategy that yields the largest GYI. 

 From the 252 combinations in Table 4.1 for the BP strategy, 181 (72%) were 

determined valid by the bounds set as mentioned above, and can be seen in Tables 8.1 – 

8.3. Illegitimate strategies are shown in italics. Values of b that involved 1.5 were, 
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generally, not appropriate for the BP strategy, except for the largest AUC values. This 

was true regardless of r or correlation values. Also, illegitimate BP strategies occur more 

often when the first tests’ correlation was less than the second tests’. Regarding r, more 

problems seem to arise when r = 2, but this trend fades as the AUC increases. 

 Legitimate BN strategies were also examined for 252 combinations of parameters 

detailed in Table 4.1. These results can be seen in Tables 8.16 – 8.18. Illegitimate 

strategies are shown in italics. From the 252 combinations in Table 4.1, 172 (68%) were 

determined valid by the bounds set. Values of b that involved 0.5 were, generally, not 

appropriate for the BN strategy. This was true regardless of AUC, r, or correlation values. 

Also, illegitimate BN strategies occur more often when the first tests’ correlation is 

higher or equal to the second tests’. This trend fades as the AUC increases, and appears to 

only occur for r = 1 or r = 2. 

 

4.2.2 Comparing BP and BN 

BP and BN strategies were compared based on results in Tables 8.1 – 8.3 and 8.16 – 8.18. 

First, AUC = (0.70, 0.70) was examined. For low values of b (i.e. pairs involving  

b = 0.5), BP is clearly superior to BN in terms of having more legitimate strategies. 

However, as r increases, the need for sequential tests versus a single test in terms of 

maximizing the GYI dwindles. For b = (1.0, 1.0), the strategies are approximately equal 

in terms of the number of legitimate strategies and the GYI. For larger values of b (pairs 

involving b = 1.5), BN is the superior strategy in terms of more legitimate strategies for 

the specified value. Overall, instances where both strategies are legitimate have an 
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approximately equivalent GYI. For BP, there were 31 instances where the strategy was 

not legitimate, while BN had 32. There were three instances in which these overlapped, 

indicating that the single test was the only relevant strategy. For times when only BP was 

illegitimate while BN was legitimate, BN yielded an equivalent or slightly higher GYI 

than using only a single test. The same was true when BN was illegitimate and BP was 

legitimate, again indicating that the sequential test was better, or at the worst equivalent, 

to the single test. 

 Second, AUC = (0.75, 0.85) was examined. Again, low values of b appear to 

favor BP while high values appear to favor BN, in terms of legitimate strategies. For 

values of b = (1.0, 1.0), higher values of correlation favor BP, while lower values favor 

BN. No correlation tended to yield valid strategies for both, with the GYI approximately 

equal across the two. This is similar to what we found for AUC = (0.70, 0.70). For BP, 

there were 37 invalid instances for this AUC, while BN had 35. For times when these 

didn’t overlap, the sequential strategy always yielded a higher GYI than a single test. 

There were four times in which neither BP nor BN was a legitimate strategy; for these 

combinations, the single test is the only option. 

 Lastly, AUC = (0.90, 0.90) was examined; BP had six illegitimate strategies (7%) 

while BN had 13 (15%). For the times where both BP and BN were legitimate strategies 

(77%), BN performed slightly better for combinations including b = 1.5, while BP was 

superior for combinations including b = 0.5. For b = (1.0, 1.0), neither BP nor BN had 

any illegitimate strategies, and were approximately equal in terms of GYI when the 

correlation was (0.0, 0.0) or (0.50, 0.50). BP saw a slightly higher GYI for  
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ρ = (0.25, 0.50), while the GYI for BN was slightly higher for ρ = (0.50, 0.25). For the 

six times BP was in invalid strategy, the GYI associated with BN was always higher, 

suggesting that the sequential strategy performs better than a single test. Comparing the 

GYI values even though one strategies is invalid provides insight into whether a single 

test versus a sequential test strategy is better. 

 

4.2.3 Effect of Population Parameters on Sensitivity, Specificity and GYI 

Consider Tables 8.1 – 8.3 for the BP strategy. As r increases, the Se decreases while the 

Sp increases; the GYI also decreases. We also see that the highest GYI occurs when the 

two tests are uncorrelated. If one can choose tests to consider for the sequential testing 

strategy, uncorrelated tests will give a higher GYI regardless of the AUC values. These 

same observations hold true for the BN strategy and can be seen in Tables 8.16 – 8.18. 

 

4.3. Simulating Data 

A subset of parameters was chosen from Table 4.1 to vary during the simulation study. 

Looking at the population parameter tables (Tables 8.1 – 8.3 and 8.16 – 8.18), we see that 

b pairs involving 1.5 are not appropriate for BP; likewise for b pairs involving 0.5 for 

BN. These could be considered the “extreme” cases for the values presented in Table 4.1. 

In order to make the amount of simulations more manageable, we limited the choice of 

correlation and r. For correlation, we consider no correlation (0.0, 0.0) or moderate 

correlation (0.5, 0.5), which can again be thought of as the “extremes” of the four cases 

presented. Although the value of r = 1 will be used in the main part of the simulation 
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studies, interesting cases of other values of r for a subset of the parameters are also 

considered. 

  To obtain a variety of total sample sizes (TSS), values of 40, 60, 100, and 200 

were used, and allocations (k) of the TSS to both the H and D groups were allowed to 

vary as ½, 1, and 2. Higher values of k = D Hn n  indicate the number of patients in the 

healthy group is smaller than the number of patients in the disease group (in this case, a 

ratio of 1:2) and have better Se, while lower values suggest the opposite (in this case, a 

ratio of 2:1) and have better Se. A summary of simulation parameters can be seen below 

in Table 4.2. 

Table 4.2: Simulation Parameters 

Simulation Parameters 

 BP BN 

b 0.5, 1 1, 1.5 

TSS 40, 60, 100, 200 

k 0.5, 1, 2 

AUC (0.7, 0.7), (0.75, 0.85), (0.9, 0.9)

ρ (0.0, 0.0), (0.5, 0.5) 

r  0.5, 1, 2 

 

 All possible combinations of variables from Table 4.2 (with r = 1) yields 144 

unique parameter combinations, labeled 1 144,...,  , that we will analyze via the 

simulation study,. The methods used to simulate the datasets will are described as follows 

(all analyses were performed using SAS): 
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 Validity of each of the sequential testing strategies for each set of population 

parameters was determined; 

 For each valid strategy, a true OOP and corresponding Se, Sp, and GYI is 

calculated from the specified values in Table 4.1; 

 For each of the 144 parameter sets 1 2 1 2( , , , , , , , )H DAUC AUC b b TSS k   shown 

in Table 4.2, 1,000 datasets for the H and D groups are simulated from a bivariate 

normal distribution; 

 OOPs from the sample are estimated, as well as the corresponding Se, Sp, and 

GYI; 

 For OOPs falling within pre-set specified bounds for the estimation, a variance 

(and covariance) estimate is calculated by bootstrapping. B = 1,000 bootstrap 

samples for each simulated dataset. Note that the bounds to compare the OOP 

with are different than the bounds set to determine legitimate strategies (sections 

3.10 and 3.11); 

 Bias, RMSE, overestimation of the Se and Sp corresponding to the OOP, and 95% 

SCIs, CRs, and their respective coverages are computed; 

 Empirical OOP estimates are calculated from the data using methodology 

presented in chapter 3, as well as the corresponding Se, Sp, and GYI; 

 Bias of the OOP, Se, and Sp and overestimation of the Se and Sp for the empirical 

estimates are also computed; and 

 For a subset of parameters in Table 4.2, the coefficient r will be examined for its 

effect on the results. 
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 Comparisons across strategies are also made; for valid strategies, the selection 

of the more appropriate testing strategy will be evaluated on the basis of the GYI. In the 

case where only BP or BN is a valid strategy for a specified parameter set, the GYI will 

still be used to determine whether or not a single test is more appropriate than a 

sequential strategy (i.e., it may be more appropriate at times to perform only a single test 

rather than a set of sequential tests).  

 Additionally, prediction equations for SCI widths and TSS are also compared 

using R2 both within and across modeling types. 

 

4.4. Believe the Positive (BP) Simulation Results 

Simulations were performed for valid BP strategies to estimate the OOP for various 

scenarios. Note that there are various total sample size, allocation, and AUC 

combinations used for BP as shown in Table 4.2. In Table 8.4 we see that for each of the 

144 combinations, there were times out of 1,000 that the simulation OOPs did not fall 

within the specified bounds, did not converge, or appeared infinite. Smaller values of b 

tend to lend themselves to values of estimated OOPs lying within the specified bounds. 

When the AUC for each test are different from one another, there are more times there 

was no valid answer as a BP strategy than when the AUC for each test is equal. 

Additionally, as sample size increases, there are less times there are problems with the 

method. 

 Median bias was assessed for both the estimation of the OOPs as well as the 

corresponding Se and Sp (see Tables 8.5 and 8.7). Note that the values are much higher 
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for the column b = 1, AUC = (0.75, 0.85), and ρ = (0.5, 0.5). This reflects poor 

estimation, and may indicate that this combination of parameters may have had a true 

OOP value falling just within the set bounds to be included as a legitimate BP strategy. 

Although this is true for median bias in the OOP, the same trend is not found when 

looking at bias in Se and Sp; these measures do not appear to be affected. Median bias in 

the OOP appears to be reduced when the AUC is increased. Correlation does not appear 

to play a huge role here, but lower values of b show smaller bias in OOP estimation. This 

trend appears to hold sometimes as the sample size increases, although the presence of k 

makes this an inconsistent finding. The allocation parameter appears to be more 

important for smaller sample sizes as compared to larger sample sizes. This finding 

appears to hold for both thresholds comprising the OOP. Median bias in Se tends to be 

reduced as the sample size increases, b < 1, and correlation is not present between the two 

tests. AUC appears to reduce the median bias in Se and Sp as it gets larger, with the 

exception of when the AUC is different for each test. For median bias in Sp, correlation 

does not appear to play as large of a role as it does for the median bias in Se. 

Additionally, median bias in Sp appears to be large in most cases than it is for Se. 

 Median RMSE was also assessed for the estimated OOPs and the corresponding 

Se and Sp (see Tables 8.6 and 8.8). Again, as the sample size increased, the median 

RMSE in the OOPs decreased. Lower b generally yielded a lower median RMSE, and 

AUC appeared to play more of a role for b = 0.5 than b = 1. Correlation did not appear to 

be an important factor, nor did k. However, for smaller AUC, k = 0.5 generally led to 

larger median RMSE.  
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 Median RMSE for Se decreased as sample size increased, correlation was 

absent between the 2 tests, and AUC increased. The ratio of standard deviations, b, does 

not appear as important here as it does for other measures. Se appears to have a lower 

RMSE than Sp when b = 1, but the opposite is true when b = 0.5. This difference 

decreases as AUC increases. 

 Percent of overestimation of Se and Sp (Table 8.9) improves for lower b, as 

sample size increases. Correlation and k do not appear to have an obvious pattern. Percent 

overestimation of Se appears to decrease as AUC increases for b = 1, but the same cannot 

be said for Sp. For b = 0.5, AUC = (0.75, 0.85) actually yields the best percent 

overestimation of both Se and Sp, but this finding is not true for b = 1. 

 Since we are producing 95% SCIs and CRs, coverage was expected to be near 

95%. Coverage of the confidence intervals and regions (Table 8.10) was not as good as 

we would have expected, especially for the parameter combination involving  

AUC = (0.75, 0.85), ρ = (0.5, 0.5), b = 1. This may reflect a legitimate strategy that fell 

just inside the specified bounds. Once data are simulated on an already questionable 

strategy, simulated values may fall outside of the bounds, corresponding with poor or 

inaccurate estimation of Se and Sp. Coverage improves as sample size is increased, more 

so for b = 1 than for b = 0.5. There appears to be no relationship between coverage and k 

and correlation between tests, with a slight relationship between AUC and coverage. 

Lastly, there does not appear to be a difference between coverage of the 95% SCIs versus 

the 95% CRs; (a formal statistical test needs to be performed to verify this observational 
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result). This is unexpected, as the CRs are a more appropriate measure of confidence 

due to the nature of the data. 

 SCI widths are summarized in Table 8.11. In general, a higher b value yielded a 

narrower SCI over all other parameters. As sample size increases, widths decrease. 

Within each value of b, when the AUC for each test was equal, widths of the SCIs 

decreased as AUCs increased; however, when the AUC for each test was different, the 

widths were actually wider than they were for scenarios with lower, equivalent AUCs. 

Correlation played a larger role in scenarios with different AUCs than equivalent AUCs. 

There is not much difference between the first and second components of the OOP in 

terms of SCI width. Allocation of k = 2 generally yielded the widest SCIs. CR areas are 

larger when there is correlation between groups, sample size is smaller. For  

b = 0.5, AUC does not matter as much in terms of reducing the CR area as it does when  

b = 1. Along these lines, k = 2 produces the widest SCI widths for b = 0.5, but this is not 

always true for b = 1. These results are summarized in Table 8.12. 

 Empirical estimates were compared to estimates derived from the methodology in 

chapter 3 in terms of median bias of the OOP and corresponding Se, and Sp, as well as 

percent overestimation of Se and Sp. These are summarized in Tables 8.13 – 8.15. There 

is no apparent pattern; bias changes from positive to negative, and does not seem to 

improve with sample size. Additionally, the percentage of overestimation of Se and Sp 

shows no consistent patterns. The empirical estimates seem very unstable and 

unpredictable. 
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4.4.1 Formal Regressions to Determine Relationships 

OLS regressions were performed for each measure of interest (bias, RMSE, etc) with the 

following set as predictor variables: AUCpair, bpair, ρpair, TSS, and k. For the 

multivariate model, only main effects were considered. The variables with “pair” in them 

refer to the fact that these are technically categorical variables that are simulated based on 

pairs. The predictor set refers to the simulation parameters from Table 4.2. Note that r is 

not included in the table below, because these simulations only used r = 1. Table 4.3 

below shows which variables are significant for each measure of interest; the ● in the box 

indicates that the variable was a significant predictor at the  

α = 0.05 level. 

 Overall, b and TSS were found to be significant for almost every measure, while k 

was significant the least. AUC and correlation were also fairly significant. Area under the 

curve was significantly related to all measures except the bias of the OOP estimates and 

the coverage of the confidence intervals/regions. All measures were related to TSS with 

the exception of bias of the OOP. The ratio of standard deviations, b, was related to a 

majority of the measures, as was correlation.  

 Allocation, k, appeared to have no effect on RMSE of the OOP or SCI widths. 

Not all relations depicted in Table 4.3 were found using an observational approach, but it 

was common between the two approaches that k was not as important as the remaining 

four parameters. 
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Table 4.3: Formal Regression Analysis to Determine Relationships, BP 

 Predictors 
Outcome AUCpair bpair ρpair TSS k 

Median Bias θ1  ● ●   
Median Bias θ2  ●   ● 

RMSE θ1  ● ● ●  
RMSE θ2 ● ●  ●  

Median Bias Se ● ●  ● ● 
Median Bias Sp ● ● ● ● ● 

RMSE Se ●  ● ● ● 
RMSE Sp ● ● ● ●  

Percent Overestimation Se ● ● ● ●  
Percent Overestimation Sp ● ● ● ● ● 

Median SCI Width θ1 ● ● ● ●  
Median SCI Width θ2 ● ●  ●  

Median CR Area ● ● ● ●  
Median SCI Coverage  ● ● ● ● 
Median CR Coverage  ● ● ● ● 

 

4.5. Believe the Negative (BN) Simulation Results 

Simulations were performed for valid BN strategies to estimate the OOP for various 

scenarios under the BN strategy, similar to those for BP. In Table 8.19 we see that for 

each of the 144 combinations, there were times out of 1,000 that the simulated OOPs 

were not considered valid based on the set bounds. As b gets larger, we have less 

instances of this and when the AUC for each test are different from one another, there are 

more times there was no valid answer. Additionally, as sample size increases, there are 

less times there are problems with the method. 

 Median bias was assessed for both the estimation of the OOPs as well as the 

corresponding Se and Sp (see Tables 8.20 and 8.22). Note that the values are much higher 

for the column b = 1, AUC = (0.75, 0.85), and ρ = (0.5, 0.5), similar to that for BP. 

Although this is true for median bias in the OOP, the same trend is not found when 



www.manaraa.com

    64

looking at bias in Se and Sp; these values appear unaffected. Median bias in the OOP 

appears to be reduced when the AUC is increased, there is no correlation between tests 

for the H and D groups, and b is further in magnitude from zero. This trend appears to 

hold sometimes as the sample size increases, although the presence of k makes this an 

inconsistent finding. This finding appears to hold for both thresholds comprising the 

OOP. Median bias in Se tends to be reduced as the sample size increases, b is further in 

magnitude from zero, and there is no correlation between the H and D groups. AUC 

appears to only play a slight role; this is magnified as b is further from zero in magnitude. 

For median bias in Sp, the bias decreases when the sample size is increased, the AUC is 

increased, and as b increased. Interestingly, for b = (1, 1), Sp had a higher median bias 

when correlation between groups was present, while the opposite is true for b = (1.5, 1.5). 

 Median RMSE was also assessed for the estimated OOPs and the corresponding 

Se and Sp (see Tables 8.21 and 8.23). Again, as the sample size increased, the median 

RMSE in the OOPs decreased. Additionally, median RMSE decreases when b increases 

in magnitude from zero, AUC is increased, correlation is not present between tests for 

either the D and H groups. For b = 1.5, k = 0.5 yielded the highest median RMSE for both 

components of the OOP, irrespective of correlation. Conversely, when b = 1, k = 1 

always usually the lowest RMSE for both components of the OOP for lower values of 

AUC and higher sample sizes. A higher median RMSE for 3  as opposed to 4 can be 

attributed to this OOP component lying close to the acceptable bounds for a valid BN 

strategy. 
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 Median RMSE for Se decreased as sample size increased, as b moved further in 

magnitude from zero, correlation was absent between the H and D groups, and AUC 

increased. Se appears to have a higher RMSE than Sp when b = 1, but the opposite is true 

when b = 1.5. This differences decreases as AUC increases. When b = 1, k = 0.5 led to a 

higher RMSE in both Se and Sp, but this pattern does not always hold for b = 1.5. For the 

larger b, the relationship appears to be entangled with sample size, correlation, and AUC. 

Similar patterns were found for the percent of overestimation of Se and Sp (see Table 

8.24). 

 Again, coverage of the confidence intervals and regions (Table 8.25) was not as 

good as we would have expected. Coverage improves as sample size is increased and 

when b = 1.5 rather than b = 1. There appears to be no relationship between coverage and 

k, AUC, and correlation between tests. Lastly, there does not appear to be a difference 

between coverage of the 95% SCIs versus the 95% CRs; a formal statistical test needs to 

be performed to verify this observational result). This is unexpected, as the CRs are a 

more appropriate measure of confidence due to the nature of the data. 

 SCI widths are summarized in Table 8.26. In general, a higher b value yielded a 

narrower width over all other parameters. As sample size increases, widths decrease, and 

when correlation is introduced, the widths become wider. Within each value of b, when 

the AUC for each test was equal, widths of the SCIs decreased as AUCs increased; 

however, when the AUC for each test was different, the widths were actually wider than 

they were for scenarios with lower, equivalent AUCs. When b = 1.5, the SCI widths for k 

= ½ are larger than for the other values of k. Widths for the threshold associated with the 
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second test appear to be much narrower than the width associated for the first test 

when the AUC for each test is different. CR areas are smaller when there is no correlation 

between groups, the AUC is larger or the AUC between tests is different, sample size 

increases, there is equal allocation between groups, and b = 1.5 rather than  

b = 1. This is summarized in Table 8.27. 

 Empirical estimates were compared to estimates derived from the methodology in 

chapter 3 in terms of median bias of the OOP and corresponding Se, and Sp, as well as 

percent overestimation of Se and Sp. These are summarized in Tables 8.28 – 8.30. As 

with BP, there is no apparent pattern, and the empirical estimates seem very unstable and 

unpredictable. 

 

4.5.1 Formal Regressions to Determine Relationships 

As was done for the BP strategy, OLS regressions were performed for each measure of 

interest with the following set as predictor variables: AUCpair, bpair, ρpair, TSS, and k. 

For the multivariate model, only main effects were considered. Table 4.4 shown on the 

next page depict which variables are significant for each measure of interest; the ● in the 

box indicates that the variable was a significant predictor at the α = 0.05 level. 

 Overall, b was very important as it was significant for every measure calculated; 

TSS was significant for every measure except median bias for the first component of the 

BN OOP. AUC and correlation appear to be important predictors, while k is important 

only in about 50% of the measures of interest. Area under the curve appears unrelated to 

bias of the OOP as well as coverage. TSS and b are related to all measures, while 
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correlation is unrelated to percentage of overestimation of Se and Sp and k is unrelated 

to RMSE of the OOPs and SCI widths. Again, it was common between the observational 

approach and the formal approach that k was not as important of a parameter as AUC, b, 

correlation, and TSS; otherwise, not all relationships discovered using formal regressions 

were seen using the observational approach. 

 If we compare Tables 4.3 and 4.4, we see similar patterns of significance for the 

parameters AUC, b, TSS, k, and correlation across BP and BN. 

Table 4.4: Formal Regression Analysis to Determine Relationships, BN 

 Predictors 
Outcome AUCpair bpair ρpair TSS k 

Median Bias θ3  ● ●   
Median Bias θ4  ● ● ● ● 

RMSE θ3 ● ● ● ●  
RMSE θ4 ● ●  ●  

Median Bias Se ● ●  ● ● 
Median Bias Sp ● ● ● ● ● 

RMSE Se ● ● ● ●  
RMSE Sp ● ● ● ● ● 

Percent Overestimation Se ● ●  ● ● 
Percent Overestimation Sp ● ●  ● ● 

Median SCI Width θ3 ● ● ● ●  
Median SCI Width θ4 ● ●  ●  

Median CR Area ● ● ● ●  
Median SCI Coverage  ● ● ● ● 
Median CR Coverage  ● ● ● ● 

 

4.6. Assessing the Normality of the OOPs for a Subset of Simulation Sets 

Normality of the theta components of the OOPs was assessed using all the methods 

described in section 3.8. This is important for the measures we are calculating such as the 

SCIs, CRs, and coverage, as these are based on the normal distribution. Although the 

simulated data follows a normal distribution, the OOPs estimated from this data may not 
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follow the same distribution. A random subset of n = 14 was selected from the 144 

simulation parameters using PROC SURVEYSELECT in SAS 9.2. This represented 

approximately 10% of the parameter sets from the simulation study. Table 4.2 contains 

the parameters of the sets chosen.  

 The parameter sets as well as the results of the normality assessment can be seen 

in Tables 8.31 – 8.32. For the BP strategy, almost all selected parameter sets appeared to 

satisfy the normality assumption, while BN had more that did not satisfy the assumption. 

Figures 4.2 – 4.4 below are three examples of the histograms and QQPlots: one that 

obviously satisfies the normality assumption, one that obviously does not satisfy the 

normality assumption, and one that is a judgment call when combined with the other 

measures in Tables 8.31 – 8.32. 

Figure 4.2: BP, Normally Distributed 
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Figure 4.3: BN, Not Normally Distributed 

 

 
 

 

Figure 4.4: BN, Normality Assumption Questionable 
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4.7. Varying r for a Subset of Simulation Parameter Sets 

To assess the effect of r, or the weight in the GYI formula (function of prevalence and/or 

cost of the disease), a subset of parameters from Table 4.2 was looked at. Setting  

ρ = (0.0, 0.0), TSS = 200, and k = 1, values of AUC and b were varied over all choices, 

and r was varied as 0.5 and 2. This yields 12 parameter combinations for each sequential 

testing strategy (values of r = 1 are included in simulation tables for comparisons). All 

calculations looked at for the BP and BN strategies above were assessed for these cases 

with the exception of the empirical estimates, and are summarized in Tables 8.33 and 

8.34. 

 For BP, the number of times there are invalid OOP estimates remains the same or 

improves as compared to r = 1 regardless of which of the two values of r ≠ 1. Compared 

to r = 1, bias of the OOP is only decreased for AUC = (0.9, 0.9) for both values of r ≠ 1, 

RMSE is only improved for AUC = (0.7, 0.7) for r = 0.5, b = 0.5 but improves for AUC= 

(0.7, 0.7) and AUC = (0.75, 0.85) regardless of r for b = 1. Bias and RMSE of Se and Sp 

worsens for r = 2, but improves for r = 0.5 (especially as AUC increases for RMSE). 

Percent overestimation of Se and Sp improves for r = 2 but not for r = 0.5; this balances 

out as AUC increases for the latter and coverage improves slightly for r = 0.5 but not r = 

2. Both SCI widths and CR areas decrease as AUC increases for r = 0.5,  

b = 0.5 as compared to r = 1 while the opposite is true for b = 1; r = 2 improves only for 

b = 1. 

 For BN, the number of times no convergence was improved for r = 2 but 

worsened for r = 0.5 for b = 1, and remained unaffected for b = 1.5. For b = 1, r = 0.5 
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improves the bias of the OOP for lower AUC values, while b = 1.5 performed best 

when r = 1. RMSE improved for b = 1, r = 0.5, but worsened for r = 2; b = 1.5 again 

performed best for r = 1. For b = 1, median bias in Se improves for lower AUC values 

and levels out, while bias in Sp worsens for lower AUC values and then levels out for r = 

0.5; for r = 2, Sp improves while Se worsens. For b = 1.5, Se remains similar while Sp 

improves for r = 0.5 and worsens for r = 2; RMSE of Se and Sp is similar. Percent 

overestimation of Se and Sp appears to remain somewhat stable. SCI widths improve for 

smaller AUC values for r = 0.5 and get larger for r = 2 for b = 1, but are always larger for 

all AUC values regardless of r for b = 1.5. CR areas are always smaller for r = 1. 

 

4.8. Predicting SCI Widths and Total Sample Size 

A researcher interested in conducting a study to estimate an OOP for a given set of tests 

might want to design the study such that the OOP is estimated with a certain level of 

precision. This could include calculating a sample size to use given a certain confidence 

interval width, or estimating a confidence interval width given a specified available 

sample size. SCI width, rather than CR area, was used because this value is more 

attainable and intuitive to a researcher. 

 With 144 parameter combination sets and 1,000 runs per set, the maximum final 

estimation count for both BP and BN is 144,000 observations each. Using OLS 

regression to predict SCI widths/TSS, only valid estimations, or those falling within the 

specified bounds, will be considered in the regression estimation. Because the first 500 

runs for each parameter set are allocated to the estimation dataset and the second 500 
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runs allocated to the validation dataset for each strategy, we expect the number of 

invalid observations across datasets to be approximately equivalent. Additionally, 

splitting the overall dataset in half allows for a maximum of 72,000 useable observations 

in each dataset. For BP, the estimation dataset yielded 64,684, while the validation 

dataset yielded 64,720. For BN, the estimation dataset yielded 64,459, while the 

validation dataset yielded 64,555. A subset of prediction models for SCI Widths and TSS 

can be seen in Appendix C. 

 First we will look at the main effects models. OLS regression was performed with 

the SCI widths as the outcome measure, using PROC REG in SAS. All variables were 

treated as continuous. To compare the different models available, R2 was used, where a 

higher value means that the model is a better fit (i.e., more variance is accounted for). 

These results are presented in Tables 4.5. M2 is the model most researchers will have the 

information to carry out. Unfortunately, it is not the best model in terms of R2. In general, 

it appears that M1 is the best model. For BP, Table 4.5 shows that M2 performs slightly 

worse than M1 or M3. With BN, M2 and M3 appear to perform very similarly in terms of 

R2. Note that the values of R2 are in the mid-range (R2 = 0.57 – 0.75). 

 When the outcome measure was TSS for the main effects models, OLS regression 

was performed using PROC REG in SAS; results can be seen in Table 4.6. The OLS 

regression was performed as it was for the SCI widths. R2 was used to compare models 

within each strategy for the OLS regressions. When predicting TSS, M1 had the best 

performance in terms of R2, although it was only marginally superior to the other models 

for the BP strategy; it was clearly superior for BN. M2 was the worst performing model 
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for BP and about the same as M3 for BN. No model accounted for more than 50% of 

the variance (R2 = 0.34 – 0.46), and all the validation dataset values were higher than the 

estimation values, meaning the model translates well to other datasets.  

 

Table 4.5: SCI Widths – OLS Regression, R2 

 R-Square 
 BP BN 
 Estimation Validation Estimation Validation

NO INTERACTIONS     
Outcome = SCI Width for θ1 or θ3     

   M1: TSS, k,   0.6441 0.6421 0.7530 0.7535 

   M2: TSS, k, 1 2,AUC AUC ,  

           1 2, , ,H Db b     
0.5789 0.5750 0.6561 0.6576 

   M3: TSS, k,  
1 2 1 2, , , , ,H Da a b b     0.6074 0.6041 0.6549 0.6573 

Outcome = SCI Width for θ2 or θ4     

   M1: TSS, k,   0.6117 0.6156 0.7408 0.7414 

   M2: TSS, k, 1 2,AUC AUC ,  

           1 2, , ,H Db b     
0.5797 0.5833 0.6569 0.6571 

   M3: TSS, k,  
1 2 1 2, , , , ,H Da a b b     0.6179 0.6197 0.6406 0.6412 

WITH INTERACTIONS     
Outcome = SCI Width for θ1 or θ3     
   M1 + TSS*k 0.6441 0.6421 0.7531 0.7537 
   M2 + TSS*k 0.5789 0.5750 0.6561 0.6577 
   M2 + AUC*b 0.5961 0.5915 0.6640 0.6648 
   M2 + TSS*k + AUC*b 0.5961 0.5915 0.6640 0.6649 
   M3 + TSS*k 0.6074 0.6041 0.6549 0.6573 
Outcome = SCI Width for θ2 or θ4     
   M1 + TSS*k 0.6117 0.6156 0.7409 0.7416 
   M2 + TSS*k 0.5797 0.5833 0.6570 0.6571 
   M2 + AUC*b 0.6138 0.6126 0.6749 0.6752 
   M2 + TSS*k + AUC*b 0.6138 0.6126 0.6749 0.6753 
   M3 + TSS*k 0.6179 0.6197 0.6406 0.6412 
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 Where appropriate (for predicting both SCI Widths and TSS), interactions 

between AUC and b and/or TSS and k were included; the results can be seen in Tables 

4.5 and 4.6. These were estimated in SAS PROC GENMOD and PROC GLM. Because 

sample sizes were so high, rather than looking at the significance of individual 

parameters, R2 was examined for an increase. For predicting SCI widths, the addition of 

TSS*k alone did not improve R2; AUC*b appears to slightly improve the model (by two 

hundredths), but appears to perform equally as well as adding both the TSS*k and the 

AUC*b interactions. This was true for both BP and BN. For predicting TSS, only the 

addition of AUC*b was appropriate for M2 since this model includes the AUC; the 

addition of this interaction appears to improve the R2 of the model for both BP and BN. 

Since M2 will most likely be the model used by researches due to the information 

necessary, the inclusion of this interaction term may be important since it explains more 

variance. 
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Table 4.6: Total Sample Size – OLS Regression, R2 

 R-Square 
 BP BN 
 Estimation Validation Estimation Validation

NO INTERACTIONS     
Outcome = TSS     

   M1: SCI_wTest1, k,   0.4155 0.4604 0.4083 0.4548 

   M1: SCI_wTest2, k,   0.3940 0.4453 0.3969 0.4471 

   M2: SCI_wTest1, k, 1 2, ,AUC AUC  

           1 2, , ,H Db b     
0.3593 0.4092 0.3434 0.3989 

   M2: SCI_wTest2, k, 1 2, ,AUC AUC  

           1 2, , ,H Db b     
0.3577 0.4134 0.3397 0.3976 

   M3: SCI_wTest1, k,  
1 2, ,a a  

           1 2, , ,H Db b     
0.3783 0.4282 0.3408 0.3980 

   M3: SCI_wTest2, k,  
1 2, ,a a  

           1 2, , ,H Db b     
0.3855 0.4362 0.3369 0.3939 

WITH INTERACTIONS     
Predictor of Width θ1 or θ3     
   M2 + AUC*b 0.3748 0.4237 0.3544 0.4088 
Predictor of Width θ2 or θ4     
   M2 + AUC*b 0.3808 0.4298 0.3538 0.4110 
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5 Application 

 

This chapter will apply the methodology developed in chapter 3 to two sets of collected 

data. Each data application section will provide a brief introduction, descriptive statistics 

on the original distributions, and comparisons between the two groups. Descriptive 

statistics will include N per group, means, standard deviations, medians, minimums, 

maximums, as well as graphics; comparisons will be made using two-sample t-tests or 

Wilcoxon non-parametric tests. As assumed for the methodology developed in this 

research, normality of the groups will be assessed using measures described in chapter 3, 

and if necessary, transformations will be applied. These transformations will be 

determined using the Box-Cox method. Using means and standard deviations of each 

group, as well as the correlation between tests within each group, the OOP will be 

estimated, using the YI (i.e., assuming r = 1) as well as the corresponding Se and Sp. A 

variance estimate is estimated using bootstrapping and 95% SCIs and CRs are calculated. 

 

5.1. Wieand Cancer Example 

Data were taken from Wieand et al., 1989. According to the authors, a case-control study 

was conducted at the Mayo Clinic in Rochester, MN, in which blood serum was taken 

from 141 patients (51 controls with pancreatitis but without pancreatic cancer, 90 cases 

with pancreatic cancer) to study two antigens: CA125, a cancer antigen, and CA19-9, a 

carbohydrate antigen. These antigens were measured using an immunoradiometric assay 

(Bast et al., 1983; Del Villano et al., 1983). A dichotomous indicator variable specifying 
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the gold standard diagnosis of pancreatic cancer (1 if cancer is present, 0 else) was also 

included in the dataset. It was not indicated how the diagnosis/gold standard was 

determined. 

 For the purpose of the sequential testing strategies that this dissertation describes, 

the markers must be ordered as a first and second test. Figures 5.1 depicts the empirical 

ROC curves for each test. AUC can be seen in Table 5.1. 

Figure 5.1: Empirical ROC Curves of Tests 
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Because the AUC for CA125 is smaller, indicating a less accurate test, than CA19-9, 

CA125 will be considered Test 1 (X1); CA19-9 will then be Test 2 (X2). 

 Descriptive statistics of the entire sample can be found below in Table 5.1. Table 

5.2 includes the descriptive statistics by cancer classification group. As can be seen, the 

mean for the CA19-9 is much larger than for CA125. For the non-cancer group, CA19-9 

ranged from 3.4 to 107.9 U/ml and CA125 ranged from 5.5 to 179.0 U/ml; those with 

pancreatic cancer had ranges of 2.4 to 24,000.0 U/ml for CA19-9 and 3.7 to 1,024.0 U/ml 

for CA125. Overall, the correlation between the two variables is 0.23. By group, it is -

0.13 for those without pancreatic cancer, and 0.20 for those with pancreatic cancer. There 

were no missing values in this data.  
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Table 5.1: Wieand Cancer Sample Descriptive Statistics1, Overall (N = 141) 

 Untransformed Transformed   
      AUC 2 
 Mean SD Mean SD b Non-Parametric Parametric
Overall        
   CA125 43.0 113.30 1.5 0.19 0.94 0.70 0.70 
   CA19-9 1,101.5 3,047.00 2.4 0.79 0.62 0.86 0.88 

1 U/ml  
2 Non-parametric AUC is the same for both the untransformed and transformed data, while Parametric    
  AUC is only appropriate for transformed (normally distributed) data 

 
Table 5.2: Cancer Sample Descriptive Statistics1, by Group  

(ND = 90, NH = 51, k = 1.8 2) 
 

 Untransformed Transformed 
 Mean SD Median ρ Mean SD Median ρ 
Healthy    -0.13    -0.13
   CA125 21.8 30.30 11.4  1.4 0.17 1.4  
   CA19-9 18.0 20.82 10.0  1.8 0.44 1.8  
Disease    0.20    0.04 
   CA125 55.0 138.83 21.8  1.6 0.18 1.6  
   CA19-9 1,715.4 3,681.47 249.3  2.8 0.71 3.0  

       1 U/ml , 2 D Hk N N ,  ρ = Pearson Correlation 

 
 From Table 5.2 we see that, as expected, patients that are diagnosed with 

pancreatic cancer tend to have higher values of CA19-9 than those with just pancreatitis; 

the same pattern holds for CA125. A Wilcoxon rank sum test verified significant 

differences in both CA125 (Z = -4.05, p-value < 0.001) and CA19-9 (Z = -7.12, p-value < 

0.0001) between those with and without pancreatic cancer. 

 Before the methodology of selecting an OOP can be applied, normality of the data 

needs to be assessed. As can be seen from Table 5.2, the means and the medians are not 

very similar for either group. Figure 5.2 can be used to assess the normality via 

histograms for each test within each group, with the top row representing the healthy 
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group and the bottom row representing disease. The same setup is employed for the 

QQPlots in Figure 5.3. 

Figure 5.2: Histograms of CA125 and CA19-9 by Cancer Group 

Controls 

 

Cases 

 

These histograms further demonstrated that those with pancreatic cancer tend to have 

higher values of CA19-9 as well as CA125 than non-cancerous patients. None of the four 

plots appear to follow a normal distribution, and this is confirmed by all Shapiro-Wilk 

tests having p-values smaller than 0.0001 and all Kolmogorov-Smirnov tests having p-

values less than 0.0100. Additionally, the skewness and kurtosis for CA125 and CA19-9 

within each group also deviate from zero, representing deviation from symmetry and 

even-tailedness. For the healthy group, the skewness for CA19-9 was 2.69 and the 

kurtosis was 8.17, and the skewness for CA125 was 3.70 with a kurtosis of 15.58. For the 

cancer group, CA125 had a skewness of 6.03 and kurtosis of 37.98, while CA19-9 had a 
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skewness of 3.59 and a kurtosis of 15.83. The QQPlots below also show obvious 

deviation from normality. The blue line in each picture represents the estimated normal 

distribution for that data. If the data were normally distributed, the data points would fall 

along this line. 

Figure 5.3: QQPlots of CA125 and CA19-9 by Cancer Group 

Controls 
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 To transform the data to normality, a Box Cox transformation was employed. 

Using the formula  
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, (5.1) 

where j represents the test number, transformation parameters λj were selected using the 

best possible option from PROC TRANSREG in SAS 9.2. The transformation parameter 
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for CA125 was λ1 = -0.5, while the transformation parameter for CA19-9 was λ2 = -

0.25. After transformation, the data appeared to satisfy the normality assumption (see 

Figures 5.4 and 5.5); the tests will now be referred to as TCA125 and TCA19-9.  

Figure 5.4: Histograms of Transformed CA125 and CA19-9 by Cancer Group 
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 The means and standard deviations for these transformed variables by group can 

be found in Table 5.2. Medians for TCA125 were 1.4 and 1.6 U/ml for the healthy and 

cancer groups respectively; they were 1.8 and 3.0 U/ml respectively for TCA19-9. For 

the healthy group, TCA125 had a skewness of 0.53 and kurtosis of -0.24 while TCA19-9 

had a skewness of 0.30 and a kurtosis of -0.78. For the cancer group, TCA125 had a 

skewness of -0.41 and a kurtosis of 0.37, while TCA19-9 had a skewness of -0.91 and a 

kurtosis of -0.07. All combinations meet the p-value requirements of the Shapiro-Wilk 

and Kolmogorov-Smirnov tests for normality except TCA19-9 for the cancer group. 
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Given all information together, the healthy group appears to follow a normal 

distribution while the disease group is questionable for TCA19-9; for purposes of this 

example we will  assume it meets the requirement. 

Figure 5.5: QQPlots of Tranformed CA125 and CA19-9 by Cancer Group 
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 Figure 5.6 shows the scatterplot of the transformed data. Note that a value of 

cancer = 0 represents pancreatitis only, while cancer = 1 represents pancreatic cancer. 

While we see some separation between groups, there is still overlap between the cases 

and controls with regard to both tests. 
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Figure 5.6: Scatterplot of Transformed CA125 and CA19-9, by Cancer Group 

 

Now that the data have been transformed to normality, OOPs can be estimated assuming 

a BP and BN sequential testing strategy. Along with these estimates, 95% SCIs and CRs 

are also estimated. These estimates are compared to 1) the univariate threshold for each 

test using equation 2.17 and 2) an empirical estimate using equations 3.28 and 3.30. Since 

both TCA125 and TCA19-9 were transformed from their original units, the results are not 

directly interpretable and will need to be back-transformed to interpret the results in the 

original units. The equation  

  
1

1 j
TRANS

j j jX X    (5.2) 

 was used to back-transform the data, where j represents the test number. 

 Table 5.3 contains the results for both univariate tests and sequential testing OOP 

estimates. These results are shown in the back-transformed, original units for clinical 

interpretation. These results show that if we were to use both CA125 and CA19-9 as 



www.manaraa.com

    84

univariate diagnostic tests, the optimal thresholds would be 16.51 U/ml and 31.85 

U/ml respectively. However, using a BP strategy, the thresholds for CA125 and CA19-9 

are 111.73 U/ml and 33.51 U/ml. For BN, the thresholds for CA125 and CA19-9 are 5.37 

U/ml and 30.85 U/ml. The CIs for the univariate test setting and the SCIs for the 

sequential test setting are also shown in Table 5.3. Note that since we are selecting the 

threshold with the largest YI, there is a possibility that more than one data point could 

yield the same value, thus allowing for more than one optimal empirical estimate (seen in 

Table 5.3). We see that the OOPs using the methodology are vastly different from those 

calculated empirically, especially for the sequential testing strategies. 

Table 5.3: Wieand Cancer Example, OOPs and 95% CIs/SCIs  
for each OOP Component (U/ml) 1 

 
 Single Test Sequential Test Strategies 
 CA125 CA19-9 (CA125, CA19-9) (CA125, CA19-9) 
   BP BN 
Empirical     
   OOP 

12.6  32.9  
(79.1, 2.4) 

(3.7, 900.0) 
(11.7, 3.6)  

(5.6, 3.65)  

Normality Assumption     
   OOP 16.51 31.85  (111.73, 33.51)  (5.37, 30.85)  
   95% CI/SCI 

(13.49, 20.68)  (25.20, 40.84)  
(33.68, 3,499.96)  

&  
(23.45, 49.57)  

(4.07, 7.43)  
&  

(23.58, 41.15)  
   Se / Sp / GYI 0.63 / 0.66 / 0.28 0.74 / 0.88 / 0.62 0.75 / 0.87 / 0.63 0.74 / 0.88 / 0.62 

1 In the Original (Back-Transformed) Units 

 

 The 95% CRs are shown in Figures 5.7 and 5.8. The first two show the 

transformed units for each strategy while the second two show the original, more 

appropriate units. It is interesting to note that although the transformed units are elliptical 

in shape, once each point comprising the circle is back transformed to original units, the 
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CR loses the elliptical shape, which applies to normal distributed data. The triangle in 

these figures represents the OOP for each strategy. 

Figure 5.7: BP CR Ellipse, Transformed and Original Units Respectively 

  

Figure 5.8: BN CR Ellipse, Transformed and Original Units Respectively 

  

 It is noteworthy that from Table 5.3 we see no increase in GYI from the use of a 

single test (CA19-9) to either sequential testing strategy. This is probably attributed to the 

fact that the AUC for CA19-9 is so high indicating that is is a fairly accurate test for 

diagnosing pancreatic cancer. We see a very slight gain in GYI from this test to the BP 

strategy (+0.01). Another interesting result is that the OOP for CA125 across the single 

and sequential tests vary greatly while the OOP for CA19-9 appears to stay fairly 
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constant when assuming normality. If we look at the OOP values for the sequential 

tests for CA125, we see that it is very high for BP and very low for BN; this indicates that 

you have have a very extreme value of CA125 to be diagnosed based on the first test, and 

that most patients would be likely to receive the second, more accurate test. 

 According to a study by Haglund (1986), less than half of the patients diagnosed 

with pancreatic cancer had elevated CA125 levels; elevated CA125 was defined as values 

greater than 35 U/ml. The Pancreatic Cancer Action Organization states that elevated 

levels of CA19-9 are values greater than 37 U/ml. Haglund (1986) also states that 

“combination of the CA125 with the CA19-9 test increases the sensitivity only 6% as 

compared to the CA19-9 assay alone,” where combination (either one test or both tests) 

refers to the use of both test as opposed to a single test. This shows that, while the CA125 

assay may not be as accurate in terms of pancreatic cancer diagnosis as CA19-9, the 

combination of the two tests does increase the Se, or the proportion of patients with 

disease that test positive for disease. Therefore, sequential testing is very applicable to 

this dataset. 

 It may still be worthwhile to do a sequential test in this case even though CA19-9 

performs equally as well as a single test depending on the cost of CA19-9, both 

monetarily or patient burden. The monetary cost of the CA125 test is cheaper than the 

monetary cost for the CA19-9 test; if not everyone receives the latter, in theory the 

overall testing cost could be lowered if there is enough of a cost difference between tests. 

However, upon examining the data we see that for the BP strategy only seven individuals 

would be diagnosed based solely on the first test, while for the BN strategy only one 
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person would be diagnosed based solely on the first test. Thus, unless the second test is 

very expensive, it is more beneficial to just perform the single test of CA19-9 for this 

specific example. 
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6 Discussion and Future Work 

 

6.1. Conclusions 

In this dissertation, methods to estimate OOPs for two sequential testing strategies are 

described. The need for such a method is evident upon a literature review, as only 

methodology to estimate the OOP for a single, or univariate, tests exists. To demonstrate 

the potential usefulness of the method, we presented an example using a pancreatic cancer 

dataset. 

 Methods to estimate an OOP for each of two sequential testing strategies were first 

examined after identifying legitimate sequential strategies. These were determined by 

imposing a set of bounds, based on the normal distribution, on an estimated OOP based on 

the population parameters for that strategy. If a strategy was not deemed legitimate, the 

sequential test performs no better than a univariate test, i.e., it provides no extra information. 

For legitimate strategies, OOPs were estimated by maximizing the GYI using the NR with 

ridging algorithm. These OOPs were evaluated in terms of bias, RMSE, percent 

overestimation of Se and Sp corresponding to the OOP, 95% SCIs and CRs, coverage of 

SCIs and CRs, and comparison to empirical methods.  

 The simulations demonstrated that b, ρ, and TSS all play a large role in the estimation 

quality, while AUC and k only sometimes influences the estimation for the BP strategy. For 

the BN strategy, b and TSS were the most influential parameters affecting OOP estimation. 

Under both sequential testing strategies, an increase in TSS and AUC appear to produce more 

valid estimations of the OOP; the same can be said for values of b not equal to one. This 

makes sense since as we increase the sample size, we expect the estimates to be more 
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accurate, especially under the assumption of normality. Additionally, a higher AUC 

indicates a more accurate test, which means the OOP associated with it should also be more 

accurately estimated. 

 For a subset of parameter sets for each strategy, r was varied to determine the 

influence of test and/or misclassification cost and well as disease prevalence on OOP 

estimation; this parameter appears to affect estimation but is dependent on the AUC and ratio 

of standard deviations, b. The inclusion of this parameter may be beneficial to estimation, 

and it is worthwhile to expanded the subset we looked at to include other levels of TSS, k, 

and ρ. It was shown that BP and BN were comparable strategies when both were determined 

to be legitimate. In cases where only one strategy was legitimate for a given set of 

parameters, the other sequential strategy still outperformed the univariate test based on the 

GYI calculation. 

 Lastly, prediction models were estimated for SCI widths for each component of 

the OOP as well as the TSS. Although these models do not appear great based on values 

of R2, there are currently no guidelines in the literature for determining sample size under 

a sequential testing strategy setting. Models developed provide a starting point for 

researchers to design studies to estimate OOPs. We saw that M1 was the model that 

appeared to perform the best, while M2 and M3 were somewhat similar in terms of R2. 

Recall that these models just use transformations of the variables in M1. Although M2 

was not the best performing model, it is likely to be the most used model due to the fact 

that the parameters needed to estimate the model will be the parameters most readily 

available to researchers. We also saw that the inclusion of an interaction term improved 

the model. 
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 After characterizing the approach, we applied and interpreted the methodology 

using real data. Specifically, a pancreatic cancer dataset from Wieand et al. (1989) was 

used to predict those with pancreatic cancer from two blood antigens: CA125 (Test 1) 

and CA19-9 (Test 2). We saw that the sequential OOP estimates were vastly different 

from the univariate OOPs for CA125, and that for both tests, the OOPs assuming 

normality were both different than the empirical estimate. Note that for BP, there were 

multiple data points that appear to be optimal based on the empirical YI calculation. 

From this example we saw the importance of test accuracy, and that even though a single 

test is just as accurate in terms of GYI as a sequential test, cost of the tests may affect 

testing strategy decisions. 

 

6.2. Limitations 

Although the simulation study involved simulating data from a bivariate normal 

distribution, the estimated OOPs themselves may not follow the same. However, the 

construction of SCIs and CRs rely on the normality assumption. We randomly selected a 

subset of population parameter sets (~10%) for which to analyze the normality of the 

OOPs, but a more extensive analysis should be performed to assess the normality of the 

OOP for all population parameter sets. Since the SCIs, CRs, and coverage calculations 

are based on this assumption, OOPs may need to be transformed to satisfy this 

assumption and make these measures more reliable. 

 The evaluation of the method detailed in this dissertation was for the most part 

limited to the assumption that r = 1, implying the use of the YI. A limited set of 
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parameters were analyzed varying r, but this set should be expanded to include various 

TSS, k, and ρ. 

 The basic NR algorithm appeared to not always find an OOP when a coarse grid 

search appeared to find one. The substitution of the NR with ridging algorithm appeared 

to solve this problem. However, the underlying problem with the positive-definiteness of 

the Hessian matrix may still be an issue and should be investigated further. 

 When characterizing the results of the simulations for the BP and BN using 

formal regressions, note that the prediction models were multivariate main effects 

models; however, when looking at all the results in Tables 8.1 – 8.30, we see that 

sometimes the results of a predictor may depend on another. A main effects model would 

not pick up the interactions between predictors. 

 OLS regressions were used to develop models for the SCI widths as well as the 

TSS. However, inspection of the TSS involved only four levels. Investigation of other 

modeling types and/or interaction terms should be further explored to see if an increase in 

R2 is obtained. Additional simulations including more values of TSS would also be 

helpful. 

 For the Wieand cancer application, we used the methodology developed in this 

dissertation regardless of the fact that the second test did not appear to fully satisfy the 

normality assumption. This assumption is important to the functioning of the 

methodology. Additionally, one of the single tests in this case appears to perform just as 

well as a sequential testing strategy in terms of the YI; more research can be done looking 
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at what happens if we factor in the prevalence of pancreatic cancer and/or cost of the 

two tests. 

 

6.3. Future Work 

The definition of the OOP in this dissertation was the set of theta values, corresponding 

to each test, that maximize the GYI. There are several other measures besides the GYI 

that could be used to define the OOP (and are mentioned in chapter 2), such as the 

(0,1)/ED/geometric method, kappa, MI, PCdx, or the DOR. 

 The NR algorithm is very sensitive to the selection of an initial value, has an 

increased computation time, and may not always converge to the global maximum. Other 

numerical estimation methods, such as the expectation-maximization (EM) algorithm or 

the Levenberg-Marquardt algorithm, should be compared to NR. 

 Formal regressions to summarize the effect of the five predictors on each measure 

of interest (as described in Tables 4.3 and 4.4) were determined using only a main effects 

model. In order to see how the predictors vary with one another, a higher level model 

including interaction terms is necessary. With a sample size of only 144, a full-factorial 

model may not be feasible given the levels of various predictors, but perhaps a model 

with four-way interactions could be estimated. From this, we could eliminate 

combinations of predictors which do not appear important until we have a significant 

model. 

 Variance estimates were obtained by bootstrapping due to its computational 

simplicity. The delta method requires more derivations as well as covariance estimates of 
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parameters; however, a more exact estimate may be obtained by employing this 

method. The delta method might also provide a method that would be less 

computationally intensive than bootstrapping. Other bootstrap methods, some of which 

are described in chapter 2, could be considered. Additionally, other methods of 

constructing confidence intervals, such as using exact methods, the Fiducial or Clopper-

Pearson intervals, could be considered. Lastly, it may be appropriate to compare the 

coverage between the CIs constructed in this dissertation to those calculated with the 

mean of the OOP components as the point estimate rather than the actual simulated value 

(for example, 1 1mean 1.96(var( ))  ). 

 It may be interesting, and useful, to develop parallel methodology for different 

distributions of test results. The gamma distribution may be a good alternative for data 

that cannot be transformed to normality. Schisterman & Perkins (2007) develop a 

formula for the univariate test case using the GYI assuming a gamma distribution on the 

data. Additionally, other non-parametric methods, such as the kernel smoothing method 

described in chapter 2, should be explored in addition to the empirical estimate. 

 The inclusion of a third sequential testing strategy, most recently named Believe 

the Extreme (BE) by Ahmed, McClish, & Schubert (2011) should be examined. This 

strategy combines the BP and BN strategies by adding a third dimension to the OOP 

estimate (i.e. there are three threshold estimates rather than two). For this strategy, Test 2 

is only administered only to those whose Test 1 values fall between the first two 

thresholds, or components in the OOP estimate; in other words, they are not positive or 

negative for disease based on Test 1. 
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6.4. Summary 

This dissertation has described methods that can be employed to estimate and evaluate 

OOPs for sequential testing strategies. It was shown that oftentimes, it is more beneficial 

to perform a sequential test rather than a single test, as well as that this method is an 

improvement of the current empirical estimate. Parameters such as the AUC, TSS, b, ρ, 

and k were analyzed for influence on the estimation, and for the most part were found to 

be important. Additionally, sample size estimation formulae for a variety of parameters 

were developed and may be used as a guideline for researchers wishing to design 

sequential testing studies. 
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8 Appendices 

 

8.1. Appendix A: Exact Gradient and Hessian Equations for BP and BN 

In order to maximize our objective function, the GYI, we must first define f and H for 

each sequential testing strategy. First consider BP. We must take the partial derivatives 

1

dGYI

d
 and 

2

dGYI

d
to comprise the gradient matrix, set them equal to zero, and solve the 

system. Taking the respective derivatives, our BP system of equations is as follows: 
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We also need the Hessian matrix of second derivatives; each entry is shown below. 
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These equations and derivatives are substituted into the NR algorithm (equation 3.16 or 

3.17). This iterative process to simultaneously solve for 1 2( , )  while both of the 

following criterion are met: the difference between the previous and current estimate of 

1 differ by more than a set convergence criterion or the difference between the previous 

and current estimate of 2 differ by more than a set convergence criterion, and the number 

of iterations is less than the maximum amount set. 

 Next, consider the BN strategy. Like the BP, we must first derive the gradient 

matrix: 
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and 

 

2
4 2

2

2
4 2

2

2
2 4

2

2

1

2 2 3 3 1 4 2 1

2
2 1 2

1

2 2 3 2 1 4 2 1

2
2 1 2

1

2

2

( )1

2 1

( )

2 1

2

D

D

H

H

H

H

BN

D D D D D D

D D D D

H H H H H H

H H H H

H

dGYI

d

e

r
e

r
e

 


 


 




       
    

       
    

 

 
  

 

 
  

 

 
  

 



      
    

       
    



2
2 4

2

1

2

2

1

2

D

D

D

e
 


 

 
  

 

 (8.8) 

 

 Again, to maximize the GYI using the NR algorithm for this strategy, a Hessian 

matrix of second derivatives is needed. Like they are listed for the BP strategy, below are 

the four components for the Hessian matrix for the BN strategy: 
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These pieces are substituted into the NR algorithm (equation 3.16 or 3.17). This iterative 

process to simultaneously solve for 3 4( , )  while both of the following criterion are met: 
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the difference between the previous and current estimate of 3 differ by more than a 

set convergence criterion or the difference between the previous and current estimate of 

4 differ by more than a set convergence criterion, and the number of iterations is less 

than the maximum amount set. 

 

8.2. Appendix B: Simulation Results 

Below are tables with the results from the simulation study detailed in chapter 4. Tables 

8.1 – 8.15 refer to BP, Tables 8.16 – 8.30 refer to BN, Tables 8.31 and 8.32 detail a 

summary of the normality assessed in section 4.6, and Tables 8.33 and 8.34 refer to the 

results for varying r detailed in section 4.7. 
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Table 8.1: BP, Population Parameters’ Optimal Points, listed as Se / Sp / GYI, AUC = (0.7, 0.7) 

 
 ρ  b = (0.5, 0.5) b = (1.0, 1.0) b = (0.5, 1.0) b = (1.0, 0.5) b = (1.5, 1.5) b = (1.0, 1.5) b = (1.5, 1.0) 
r = 0.5 (0.00, 0.00)  0.77 / 0.74 / 0.64 0.89 / 0.38 / 0.58 0.85 / 0.51 / 0.61 0.85 / 0.51 / 0.61 0.94 / 0.35 / 0.61 0.93 / 0.36 / 0.62 0.93 / 0.36 / 0.62 

 (0.25, 0.50)  0.70 / 0.72 / 0.56 0.90 / 0.29 / 0.55 0.87 / 0.37 / 0.56 0.87 / 0.37 / 0.56 0.94 / 0.35 / 0.61 0.94 / 0.35 / 0.61 0.94 / 0.35 / 0.61 
 (0.50, 0.25)  0.76 / 0.72 / 0.62 0.90 / 0.39 / 0.59 0.85 / 0.49 / 0.60 0.86 / 0.49 / 0.60 0.94 / 0.35 / 0.62 0.93 / 0.37 / 0.62 0.93 / 0.37 / 0.62 
 (0.50, 0.50)  0.72 / 0.71 / 0.57 0.90 / 0.33 / 0.56 0.86 / 0.41 / 0.57 0.86 / 0.41 / 0.57 0.94 / 0.35 / 0.61 0.94 / 0.35 / 0.61 0.94 / 0.35 / 0.61 
          

r = 1 (0.00, 0.00)  0.67 / 0.88 / 0.55 0.69 / 0.66 / 0.35 0.65 / 0.79 / 0.45 0.65 / 0.79 / 0.45 0.82 / 0.51 / 0.33 0.81 / 0.53 / 0.34 0.81 / 0.53 / 0.34 
 (0.25, 0.50)  0.59 / 0.89 / 0.48 0.65 / 0.64 / 0.29 0.53 / 0.85 / 0.38 0.53 / 0.85 / 0.38 0.82 / 0.51 / 0.33 0.82 / 0.51 / 0.33 0.82 / 0.51 / 0.33 
 (0.50, 0.25)  0.65 / 0.88 / 0.53 0.71 / 0.65 / 0.36 0.64 / 0.79 / 0.43 0.64 / 0.79 / 0.43 0.84 / 0.50 / 0.33 0.81 / 0.54 / 0.35 0.81 / 0.54 / 0.35 
 (0.50, 0.50)  0.60 / 0.88 / 0.48 0.66 / 0.65 / 0.31 0.58 / 0.82 / 0.39 0.58 / 0.82 / 0.39 0.82 / 0.51 / 0.33 0.82 / 0.51 / 0.33 0.82 / 0.51 / 0.33 
          

r = 2 (0.00, 0.00)  0.58 / 0.95 / 0.47 0.38 / 0.88 / 0.14 0.46 / 0.93 / 0.33 0.46 / 0.93 / 0.33 0.00 / 1.00 / 0.00 0.29 / 0.90 / 0.09 0.29 / 0.90 / 0.09 
 (0.25, 0.50)  0.50 / 0.95 / 0.40 0.29 / 0.91 / 0.10 0.40 / 0.95 / 0.31 0.40 / 0.95 / 0.31 0.00 / 1.00 / 0.00 0.29 / 0.90 / 0.09 0.29 / 0.90 / 0.09 
 (0.50, 0.25)  0.55 / 0.95 / 0.45 0.39 / 0.88 / 0.14 0.44 / 0.94 / 0.32 0.44 / 0.94 / 0.32 0.00 / 1.00 / 0.00 0.29 / 0.90 / 0.09 0.29 / 0.90 / 0.09 
 (0.50, 0.50)  0.51 / 0.95 / 0.41 0.33 / 0.89 / 0.12 0.40 / 0.95 / 0.31 0.40 / 0.95 / 0.31 0.00 / 1.00 / 0.00 0.29 / 0.90 / 0.09 0.29 / 0.90 / 0.09 

Note: Red italicized cells refer to illegitimate BP strategies (combination of values were not valid) 
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Table 8.2: BP, Population Parameters’ Optimal Points, listed as Se / Sp / GYI, AUC = (0.75, 0.85) 

 
 ρ  b = (0.5, 0.5) b = (1.0, 1.0) b = (0.5, 1.0) b = (1.0, 0.5) b = (1.5, 1.5) b = (1.0, 1.5) b = (1.5, 1.0) 
r = 0.5 (0.00, 0.00)     0.85 / 0.83 / 0.77 0.90 / 0.62 / 0.71 0.89 / 0.71 / 0.74 0.86 / 0.73 / 0.72 0.93 / 0.60 / 0.73 0.93 / 0.60 / 0.74 0.92 / 0.55 / 0.69 

 (0.25, 0.50)  0.80 / 0.81 / 0.70 0.89 / 0.60 / 0.69 0.88 / 0.64 / 0.70 0.78 / 0.78 / 0.67 0.93 / 0.60 / 0.73 0.93 / 0.60 / 0.73 0.89 / 0.60 / 0.69 
 (0.50, 0.25)  0.84 / 0.82 / 0.75 0.90 / 0.61 / 0.70 0.89 / 0.69 / 0.73 0.85 / 0.71 / 0.71 0.93 / 0.60 / 0.73 0.93 / 0.60 / 0.74 0.92 / 0.56 / 0.70 
 (0.50, 0.50)  0.81 / 0.80 / 0.71 0.89 / 0.60 / 0.69 0.88 / 0.65 / 0.70 0.81 / 0.73 / 0.68 0.93 / 0.60 / 0.73 0.93 / 0.60 / 0.73 0.89 / 0.60 / 0.69 
          

r = 1 (0.00, 0.00)  0.80 / 0.91 / 0.71 0.79 / 0.77 / 0.56 0.80 / 0.83 / 0.63 0.76 / 0.87 / 0.63 0.85 / 0.71 / 0.56 0.85 / 0.71 / 0.57 0.77 / 0.77 / 0.54 
 (0.25, 0.50)  0.73 / 0.91 / 0.64 0.77 / 0.77 / 0.54 0.76 / 0.81 / 0.57 0.70 / 0.90 / 0.60 0.85 / 0.71 / 0.56 0.85 / 0.71 / 0.56 0.77 / 0.77 / 0.54 
 (0.50, 0.25)  0.77 / 0.91 / 0.68 0.79 / 0.77 / 0.55 0.79 / 0.83 / 0.61 0.74 / 0.88 / 0.62 0.85 / 0.71 / 0.56 0.86 / 0.71 / 0.57 0.77 / 0.77 / 0.54 
 (0.50, 0.50)  0.74 / 0.91 / 0.64 0.77 / 0.77 / 0.54 0.76 / 0.81 / 0.58 0.70 / 0.90 / 0.60 0.85 / 0.71 / 0.56 0.85 / 0.71 / 0.56 0.77 / 0.77 / 0.54 
          

r = 2 (0.00, 0.00)  0.74 / 0.96 / 0.65 0.63 / 0.88 / 0.40 0.68 / 0.92 / 0.52 0.66 / 0.95 / 0.55 0.69 / 0.82 / 0.33 0.70 / 0.82 / 0.34 0.60 / 0.89 / 0.37 
 (0.25, 0.50)  0.66 / 0.96 / 0.58 0.60 / 0.89 / 0.37 0.61 / 0.92 / 0.44 0.62 / 0.95 / 0.53 0.69 / 0.82 / 0.33 0.69 / 0.82 / 0.33 0.60 / 0.89 / 0.37 
 (0.50, 0.25)  0.71 / 0.96 / 0.62 0.63 / 0.88 / 0.39 0.66 / 0.92 / 0.49 0.64 / 0.95 / 0.54 0.69 / 0.82 / 0.33 0.70 / 0.82 / 0.34 0.60 / 0.89 / 0.37 
 (0.50, 0.50)  0.67 / 0.96 / 0.58 0.60 / 0.89 / 0.37 0.62 / 0.92 / 0.45 0.62 / 0.95 / 0.53 0.69 / 0.82 / 0.33 0.69 / 0.82 / 0.33 0.60 / 0.89 / 0.37 

Note: Red italicized cells refer to illegitimate BP strategies (combination of values were not valid) 
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Table 8.3: BP, Population Parameters’ Optimal Points, listed as Se / Sp / GYI, AUC = (0.9, 0.9) 

 
 ρ  b = (0.5, 0.5) b = (1.0, 1.0) b = (0.5, 1.0) b = (1.0, 0.5) b = (1.5, 1.5) b = (1.0, 1.5) b = (1.5, 1.0) 
r = 0.5 (0.00, 0.00)  0.92 / 0.91 / 0.88 0.93 / 0.78 / 0.82 0.93 / 0.84 / 0.85 0.93 / 0.84 / 0.85 0.95 / 0.72 / 0.81 0.95 / 0.75 / 0.82 0.95 / 0.75 / 0.82 

 (0.25, 0.50)  0.88 / 0.88 / 0.82 0.91 / 0.73 / 0.77 0.89 / 0.80 / 0.79 0.89 / 0.80 / 0.79 0.94 / 0.69 / 0.79 0.94 / 0.70 / 0.79 0.94 / 0.70 / 0.79 
 (0.50, 0.25)  0.91 / 0.89 / 0.85 0.93 / 0.76 / 0.81 0.92 / 0.83 / 0.83 0.92 / 0.83 / 0.83 0.95 / 0.72 / 0.81 0.94 / 0.73 / 0.81 0.94 / 0.73 / 0.81 
 (0.50, 0.50)  0.88 / 0.88 / 0.82 0.91 / 0.74 / 0.78 0.90 / 0.80 / 0.80 0.90 / 0.80 / 0.80 0.94 / 0.69 / 0.79 0.94 / 0.71 / 0.79 0.94 / 0.71 / 0.79 
          

r = 1 (0.00, 0.00)  0.90 / 0.95 / 0.84 0.88 / 0.85 / 0.73 0.88 / 0.91 / 0.79 0.88 / 0.91 / 0.79 0.90 / 0.79 / 0.69 0.89 / 0.82 / 0.71 0.89 / 0.82 / 0.71 
 (0.25, 0.50)  0.84 / 0.94 / 0.78 0.83 / 0.83 / 0.67 0.82 / 0.90 / 0.72 0.82 / 0.90 / 0.72 0.88 / 0.78 / 0.66 0.87 / 0.78 / 0.66 0.87 / 0.78 / 0.66 
 (0.50, 0.25)  0.87 / 0.94 / 0.82 0.87 / 0.85 / 0.71 0.86 / 0.90 / 0.76 0.86 / 0.90 / 0.76 0.90 / 0.79 / 0.69 0.89 / 0.81 / 0.70 0.89 / 0.81 / 0.70 
 (0.50, 0.50)  0.84 / 0.94 / 0.78 0.84 / 0.84 / 0.68 0.83 / 0.90 / 0.73 0.83 / 0.90 / 0.73 0.88 / 0.77 / 0.66 0.87 / 0.80 / 0.67 0.87 / 0.80 / 0.67 
          

r = 2 (0.00, 0.00)  0.86 / 0.97 / 0.81 0.79 / 0.91 / 0.62 0.82 / 0.95 / 0.72 0.82 / 0.95 / 0.72 0.81 / 0.86 / 0.52 0.80 / 0.88 / 0.57 0.80 / 0.88 / 0.57 
 (0.25, 0.50)  0.80 / 0.97 / 0.73 0.73 / 0.91 / 0.54 0.75 / 0.95 / 0.65 0.75 / 0.95 / 0.65 0.77 / 0.85 / 0.48 0.70 / 0.90 / 0.50 0.70 / 0.90 / 0.50 
 (0.50, 0.25)  0.84 / 0.97 / 0.78 0.78 / 0.91 / 0.60 0.80 / 0.95 / 0.69 0.80 / 0.95 / 0.65 0.80 / 0.86 / 0.51 0.79 / 0.88 / 0.55 0.79 / 0.88 / 0.55 
 (0.50, 0.50)  0.80 / 0.97 / 0.74 0.74 / 0.91 / 0.56 0.76 / 0.95 / 0.66 0.76 / 0.95 / 0.66 0.77 / 0.85 / 0.48 0.76 / 0.88 / 0.51 0.76 / 0.88 / 0.51 

Note: Red italicized cells refer to illegitimate BP strategies (combination of values were not valid) 
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Table 8.4: BP, Number of Invalid OOPs, listed as θ1 / θ2 / θ1 & θ2 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=½ 40 ½  8 / 8 / 0 5 / 6 / 0  5 / 0 / 0 15 / 0 / 0  0 / 0 / 0 2 / 0 / 0 
 40 1  3 / 3 / 0 3 / 2 / 0  5 / 0 / 0 7 / 0 / 0  0 / 0 / 0 1 / 0 / 0 
 40 2  1 / 1 / 0 2 / 0 / 0  2 / 0 / 0 6 / 0 / 0  0 / 1 / 0 0 / 0 / 0 
             
 60 ½  1 / 2 / 0 2 / 0 / 0  2 / 0 / 0 2 / 0 / 0  0 / 0 / 0 1 / 0 / 0 
 60 1  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 1 / 0 / 0  1 / 0 / 0 0 / 1 / 0 
 60 2  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 2 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
            
 100 ½  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 2 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
 100 1  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 1 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
 100 2  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
            
 200 ½  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
 200 1  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
 200 2  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
            

b=1 40 ½  172 / 180 / 1 209 / 215 / 0  284 / 16 / 0 488 / 1 / 0  34 / 43 / 0 71 / 68 / 0 
 40 1  167 / 143 / 0 181 / 208 / 0  240 / 10 / 0 468 / 3 / 0  29 / 28 / 0 45 / 62 / 0 
 40 2  142 / 149 / 0 204 / 191 / 0  248 / 12 / 0 417 / 8 / 0  30 / 34 / 0 71 / 52 / 0 
            
 60 ½  132 / 141 / 0 169 / 190 / 0  229 / 3 / 0 483 / 3 / 0  12 / 11 / 0 38 / 32 / 0 
 60 1  137 / 116 / 0 174 / 182 / 0  197 / 3 / 0 441 / 0 / 0  9 / 10 / 0 34 / 36 / 0 
 60 2  134 / 125 / 0 179 / 159 / 0  211 / 6 / 0 424 / 1 / 0  15 / 15 / 0 44 / 36 / 0 
            
 100 ½  89 / 98 / 0 150 / 146 / 0  171 / 0 / 0 467 / 0 / 0  3 / 2 / 0 8 / 20 / 0 
 100 1  77 / 84 / 0 120 / 144 / 0  138 / 0 / 0 432 / 0 / 0  3 / 1 / 0 16 / 16 / 0 
 100 2  80 / 86 / 0 153 / 143 / 0  140 / 1 / 0 417 / 1 / 0  5 / 3 / 0 16 / 16 / 0 
            
 200 ½  61 / 34 / 0 87 / 77 / 0  93 / 0 / 0 447 / 0 / 0  0 / 0 / 0 3 / 2 / 0 
 200 1  24 / 23 / 0 68 / 81 / 0  79 / 0 / 0 399 / 0 / 0  0 / 0 / 0 3 / 2 / 0 
 200 2  34 / 24 / 0 76 / 82 / 0  92 / 0 / 0 389 / 0 / 0  0 / 1 / 0 2 / 1 / 0 



www.manaraa.com

    112

Table 8.5: BP, Median Bias in (θ1, θ2), listed as θ1 / θ2 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  -0.020 / -0.036 -0.009 / 0.003  0.010 / -0.026 0.002 / -0.010  0.023 / -0.001 0.014 / 0.006 

 40 1  -0.035 / -0.026 -0.070 / -0.033  -0.018 / -0.019 0.005 / -0.017  -0.039 / 0.005 -0.005 / 0.003 
 40 2  -0.051 / -0.031 -0.050 / -0.032  -0.039 / -0.012 -0.028 / -0.046  -0.060 / -0.025 -0.007 / -0.025 
            
 60 ½  -0.013 / -0.021 -0.019 / -0.016  0.006 / -0.007 0.018 / -0.008  0.025 / -0.004 0.015 / 0.015 
 60 1  -0.011 / -0.024 -0.016 / -0.011  -0.023 / -0.020 -0.011 / -0.013  -0.008 / -0.007 0.010 / -0.010 
 60 2  -0.050 / -0.019 -0.016 / -0.027  -0.012 / -0.008 0.010 / -0.010  -0.011 / -0.030 -0.027 / -0.018 
            
 100 ½  -0.002 / -0.017 0.009 / -0.022  0.013 / -0.009 0.015 / -0.016  0.003 / -0.002 0.006 / 0.000 
 100 1  -0.003 / -0.026 -0.011 / -0.007  -0.013 / -0.009 -0.010 / -0.003  -0.000 / -0.003 0.002 / 0.008 
 100 2  -0.025 / -0.012 -0.030 / -0.033  -0.004 / -0.010 0.012 / -0.007  -0.030 / -0.007 0.007 / -0.021 
            
 200 ½  -0.008 / -0.005 -0.002 / -0.000  0.002 / 0.003 0.010 / -0.000  0.002 / -0.006 0.013 / -0.004 
 200 1  -0.003 / -0.009 -0.009 / -0.008  0.003 / -0.002 0.001 / -0.005  -0.010 / -0.009 0.002 / 0.009 
 200 2  0.001 / -0.012 -0.010 / -0.006  -0.026 / 0.005 0.003 / -0.011  -0.005 / -0.016 0.007 / 0.002 
            

b=1 40 ½  0.024 / -0.011 0.038 / -0.002  -0.270 / 0.122 -0.978 / 0.150  0.033 / 0.006 -0.002 / 0.065 
 40 1  0.006 / -0.007 -0.007 / -0.000  -0.236 / 0.100 -0.999 / 0.107  -0.016 / 0.010 -0.012 / -0.002 
 40 2  -0.012 / -0.019 0.006 / -0.033  -0.275 / 0.098 -1.114 / 0.114  0.004 / -0.026 -0.059 / -0.028 
            
 60 ½  0.042 / -0.014 0.061 / -0.025  -0.129 / 0.055 -0.830 / 0.120  0.016 / 0.004 0.018 / 0.044 
 60 1  0.026 / -0.017 0.049 / 0.008  -0.198 / 0.075 -0.904 / 0.097  -0.018 / 0.002 -0.016 / 0.013 
 60 2  -0.034 / -0.015 -0.012 / 0.017  0.193 / 0.065 -1.032 / 0.087  -0.008 / -0.019 -0.009 / -0.024 
            
 100 ½  0.008 / 0.008 0.070 / -0.002  -0.066 / 0.054 -0.825 / 0.087  0.024 / -0.017 -0.002 / 0.001 
 100 1  0.020 / -0.019 0.033 / -0.009  -0.092 / 0.047 -0.769 / 0.057  0.011 / -0.022 -0.011 / 0.003 
 100 2  -0.003 / -0.024 0.031 / -0.026  -0.108 / 0.041 -0.822 / 0.067  0.007 / -0.015 0.003 / -0.019 
            
 200 ½  -0.003 / 0.008 0.012 / 0.006  -0.034 / 0.016 -0.616 / 0.045  0.001 / 0.001 0.011 / -0.010 
 200 1  0.002 / -0.005 0.048 / -0.010  -0.023 / 0.013 -0.625 / 0.043  -0.000 / 0.000 0.015 / -0.022 
 200 2  -0.016 / 0.003 -0.008 / 0.012  -0.070 / 0.017 -0.709 / 0.038  -0.004 / -0.011 0.003 / -0.010 
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Table 8.6: BP, Median RMSE in (θ1, θ2), listed as θ1 / θ2 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  0.451 / 0.441 0.472 / 0.469  0.490 / 0.378 0.564 / 0.352  0.446 / 0.441 0.470 / 0.477 

 40 1  0.439 / 0.440 0.451 / 0.464  0.501 / 0.385 0.565 / 0.343  0.441 / 0.442 0.450 / 0.448 
 40 2  0.512 / 0.504 0.504 / 0.506  0.557 / 0.436 0.614 / 0.416  0.511 / 0.515 0.489 / 0.508 
            
 60 ½  0.356 / 0.365 0.386 / 0.380  0.405 / 0.305 0.473 / 0.277  0.353 / 0.343 0.362 / 0.364 
 60 1  0.356 / 0.361 0.363 / 0.372  0.408 / 0.302 0.445 / 0.284  0.354 / 0.354 0.361 / 0.359 
 60 2  0.399 / 0.410 0.417 / 0.405  0.442 / 0.354 0.509 / 0.315  0.415 / 0.412 0.399 / 0.400 
            
 100 ½  0.266 / 0.266 0.281 / 0.274  0.302 / 0.224 0.341 / 0.203  0.256 / 0.261 0.256 / 0.258 
 100 1  0.268 / 0.275 0.281 / 0.277  0.301 / 0.234 0.331 / 0.210  0.266 / 0.266 0.267 / 0.265 
 100 2  0.313 / 0.312 0.313 / 0.315  0.349 / 0.268 0.382 / 0.254  0.315 / 0.313 0.312 / 0.302 
            
 200 ½  0.184 / 0.181 0.185 / 0.184  0.202 / 0.155 0.223  0.144  0.180 / 0.177 0.181 / 0.177 
 200 1  0.187 / 0.193 0.192 / 0.187  0.210 / 0.161 0.231 / 0.148  0.189 / 0.189 0.184 / 0.183 
 200 2  0.218 / 0.221 0.217 / 0.217  0.240 / 0.191 0.259 / 0.175  0.219 / 0.222 0.209 / 0.211 
            

b=1 40 ½  0.529 / 0.529 0.584 / 0.589  0.597 / 0.390 1.130 / 0.352  0.485 / 0.471 0.572 / 0.600 
 40 1  0.539 / 0.521 0.582 / 0.594  0.602 / 0.378 1.143 / 0.325  0.469 / 0.478 0.545 / 0.552 
 40 2  0.558 / 0.554 0.582 / 0.567  0.631 / 0.394 1.244 / 0.361  0.518 / 0.517 0.557 / 0.562 
            
 60 ½  0.507 / 0.499 0.564 / 0.544  0.565 / 0.330 0.980 / 0.288  0.413 / 0.407 0.515 / 0.557 
 60 1  0.496 / 0.497 0.507 / 0.510  0.576 / 0.319 1.033 / 0.286  0.402 / 0.411 0.489 / 0.500 
 60 2  0.502 / 0.514 0.524 / 0.531  0.577 / 0.337 1.151 / 0.300  0.437 / 0.432 0.507 / 0.511 
            
 100 ½  0.477 / 0.464 0.511 / 0.506  0.497 / 0.250 0.964 / 0.218  0.331 / 0.317 0.443 / 0.446 
 100 1  0.457 / 0.459 0.480 / 0.489  0.483 / 0.251 0.899 / 0.194  0.324 / 0.322 0.416 / 0.425 
 100 2  0.475 / 0.477 0.490 / 0.490  0.514 / 0.264 0.958 / 0.211  0.346 / 0.355 0.435 / 0.428 
            
 200 ½  0.393 / 0.396 0.459 / 0.464  0.396 / 0.176 0.760 / 0.137  0.228 / 0.228 0.320 / 0.316 
 200 1  0.385 / 0.395 0.446 / 0.441  0.396 / 0.171 0.779 / 0.124  0.218 / 0.219 0.295 / 0.288 
 200 2  0.396 / 0.406 0.429 / 0.437  0.419 / 0.185 0.849 / 0.137  0.252 / 0.257 0.304 / 0.297 
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Table 8.7: BP, Median Bias in Sensitivity and Specificity for (θ1, θ2), listed as Se / Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  0.021 / 0.002 0.018 / 0.004  0.017 / 0.005 0.013 / 0.007  0.014 / 0.003 0.014 / 0.005 

 40 1  0.018 / 0.003 0.023 / 0.006  0.015 / 0.006 0.012 / 0.004  0.005 / 0.002 0.011 / 0.005 
 40 2  0.019 / 0.007 0.018 / 0.006  0.012 / 0.006 0.016 / 0.010  0.011 / 0.005 0.013 / 0.008 
            
 60 ½  0.010 / 0.001 0.016 / 0.002  0.013 / 0.003 0.011 / 0.004  0.010 / 0.002 0.013 / 0.003 
 60 1  0.014 / 0.002 0.012 / 0.002  0.005 / 0.002 0.010 / 0.004  0.007 / 0.002 0.007 / 0.004 
 60 2  0.014 / 0.004 0.010 / 0.004  0.008 / 0.003 0.011 / 0.005  0.005 / 0.002 0.008 / 0.006 
            
 100 ½  0.007 / 0.001 0.010 / 0.001  0.004 / 0.001 0.007 / 0.002  0.004 / 0.000 0.006 / 0.002 
 100 1  0.008 / 0.001 0.006 / 0.001  0.007 / 0.002 0.007 / 0.003  0.003 / -0.000 0.005 / 0.003 
 100 2  0.007 / 0.002 0.012 / 0.004  0.005 / 0.002 0.005 / 0.003  0.004 / 0.002 0.003 / 0.003 
            
 200 ½  0.004 / 0.001 -0.000 / 0.000  0.005 / 0.002 0.003 / 0.002  0.003 / 0.000 -0.001 / 0.000 
 200 1  0.005 / 0.000 0.006 / 0.001  0.004 / 0.001 0.003 / 0.002  0.003 / 0.001 0.001 / 0.001 
 200 2  0.004 / 0.000 0.004 / 0.001  0.002 / 0.001 0.003 / 0.001  0.002 / 0.000 0.001 / 0.002 
            

b=1 40 ½  0.063 / 0.029 0.081 / 0.024  0.036 / 0.017 0.035 / 0.020  0.019 / 0.011 0.027 / 0.016 
 40 1  0.057 / 0.032 0.063 / 0.028  0.028 / 0.015 0.023 / 0.027  0.016 / 0.015 0.020 / 0.016 
 40 2  0.047 / 0.043 0.060 / 0.041  0.030 / 0.027 0.022 / 0.021  0.017 / 0.017 0.021 / 0.026 
            
 60 ½  0.047 / 0.010 0.057 / 0.017  0.024 / 0.011 0.026 / 0.013  0.015 / 0.007 0.018 / 0.009 
 60 1  0.033 / 0.015 0.034 / 0.031  0.021 / 0.008 0.016 / 0.013  0.010 / 0.009 0.017 / 0.014 
 60 2  0.034 / 0.027 0.035 / 0.038  0.016 / 0.014 0.011 / 0.014  0.011 / 0.013 0.014 / 0.019 
            
 100 ½  0.030 / 0.006 0.037 / 0.016  0.017 / 0.006 0.012 / 0.008  0.008 / 0.005 0.011 / 0.005 
 100 1  0.023 / 0.017 0.022 / 0.018  0.011 / 0.006 0.012 / 0.008  0.006 / 0.005 0.011 / 0.009 
 100 2  0.019 / 0.019 0.029 / 0.023  0.011 / 0.008 0.013 / 0.006  0.007 / 0.007 0.010 / 0.009 
            
 200 ½  0.018 / 0.004 0.012 / 0.004  0.007 / 0.004 0.007 / 0.004  0.004 / 0.003 0.005 / 0.001 
 200 1  0.012 / 0.005 0.010 / 0.009  0.005 / 0.006 0.005 / 0.005  0.003 / 0.002 0.005 / 0.003 
 200 2  0.012 / 0.006 0.014 / 0.013  0.007 / 0.005 0.005 / 0.005  0.002 / 0.003 0.007 / 0.004 
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Table 8.8: BP, Median RMSE in Sensitivity and Specificity for (θ1, θ2), listed as Se / Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  0.110 / 0.043 0.131 / 0.048  0.083 / 0.033 0.101 / 0.037  0.052 / 0.023 0.076 / 0.028 

 40 1  0.097 / 0.039 0.116 / 0.042  0.075 / 0.031 0.090 / 0.034  0.048 / 0.021 0.067 / 0.026 
 40 2  0.093 / 0.040 0.105 / 0.043  0.070 / 0.033 0.084 / 0.037  0.045 / 0.022 0.061 / 0.027 
            
 60 ½  0.094 / 0.034 0.109 / 0.038  0.071 / 0.027 0.089 / 0.029  0.046 / 0.019 0.064 / 0.022 
 60 1  0.082 / 0.031 0.094 / 0.034  0.061 / 0.025 0.075 / 0.028  0.040 / 0.017 0.056 / 0.021 
 60 2  0.076 / 0.032 0.087 / 0.035  0.057 / 0.027 0.071 / 0.031  0.038 / 0.018 0.051 / 0.022 
            
 100 ½  0.072 / 0.025 0.084 / 0.027  0.056 / 0.020 0.067 / 0.022  0.036 / 0.014 0.050 / 0.017 
 100 1  0.061 / 0.024 0.071 / 0.025  0.047 / 0.019 0.058 / 0.021  0.031 / 0.014 0.043 / 0.017 
 100 2  0.058 / 0.025 0.068 / 0.027  0.045 / 0.020 0.054 / 0.024  0.030 / 0.014 0.041 / 0.018 
            
 200 ½  0.051 / 0.017 0.059 / 0.019  0.039 / 0.014 0.049 / 0.015  0.026 / 0.010 0.036 / 0.012 
 200 1  0.043 / 0.016 0.051 / 0.018  0.034 / 0.014 0.042 / 0.015  0.023 / 0.010 0.031 / 0.012 
 200 2  0.041 / 0.017 0.046 / 0.019  0.032 / 0.015 0.039 / 0.016  0.021 / 0.010 0.029 / 0.013 
            

b=1 40 ½  0.110 / 0.112 0.131 / 0.124  0.076 / 0.076 0.089 / 0.079  0.050 / 0.053 0.064 / 0.061 
 40 1  0.105 / 0.112 0.124 / 0.134  0.070 / 0.075 0.082 / 0.078  0.047 / 0.055 0.059 / 0.063 
 40 2  0.102 / 0.122 0.121 / 0.142  0.070 / 0.084 0.081 / 0.090  0.046 / 0.059 0.060 / 0.067 
            
 60 ½  0.093 / 0.097 0.114 / 0.106  0.063 / 0.063 0.074 / 0.065  0.043 / 0.045 0.056 / 0.052 
 60 1  0.084 / 0.096 0.100 / 0.107  0.056 / 0.063 0.067 / 0.066  0.038 / 0.045 0.050 / 0.052 
 60 2  0.083 / 0.101 0.102 / 0.118  0.055 / 0.069 0.065 / 0.073  0.038 / 0.050 0.048 / 0.058 
            
 100 ½  0.075 / 0.076 0.092 / 0.086  0.050 / 0.049 0.058 / 0.052  0.034 / 0.034 0.043 / 0.040 
 100 1  0.067 / 0.076 0.082 / 0.087  0.044 / 0.050 0.053 / 0.052  0.031 / 0.035 0.039 / 0.041 
 100 2  0.066 / 0.081 0.085 / 0.096  0.044 / 0.056 0.052 / 0.059  0.030 / 0.040 0.039 / 0.045 
            
 200 ½  0.054 / 0.055 0.067 / 0.064  0.036 / 0.035 0.043 / 0.037  0.024 / 0.024 0.031 / 0.028 
 200 1  0.047 / 0.053 0.059 / 0.063  0.032 / 0.035 0.037 / 0.038  0.021 / 0.025 0.028 / 0.029 
 200 2  0.047 / 0.059 0.060 / 0.067  0.031 / 0.040 0.036 / 0.043  0.021 / 0.028 0.027 / 0.032 
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Table 8.9: BP, Percent of Overestimation of Sensitivity and Specificity, listed as % Se / % Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  58.54 / 52.95 57.53 / 54.60  58.19 / 56.78 57.56 / 59.90  64.50 / 56.00 59.42 / 58.12 

 40 1  57.65 / 54.33 57.69 / 57.19  58.79 / 59.40 56.19 / 56.39  55.80 / 53.60 56.66 / 57.06 
 40 2  59.92 / 58.62 59.72 / 57.21  57.41 / 57.92 58.45 / 62.07  60.06 / 59.06 60.60 / 61.80 
            
 60 ½  55.07 / 51.05 57.21 / 53.01  58.82 / 55.31 55.51 / 56.01  60.90 / 55.20 58.36 / 57.26 
 60 1  56.70 / 52.90 55.00 / 53.00  54.20 / 54.00 56.86 / 55.46  57.86 / 55.86 54.55 / 58.16 
 60 2  60.50 / 56.00 56.50 / 55.60  58.00 / 57.60 57.41 / 57.41  56.30 / 55.70 57.40 / 61.70 
            
 100 ½  54.20 / 52.40 56.10 / 53.20  53.60 / 52.90 54.71 / 52.81  55.60 / 51.20 55.30 / 57.00 
 100 1  57.30 / 53.50 54.60 / 51.70  57.20 / 55.60 56.16 / 57.06  56.40 / 48.80 55.10 / 58.80 
 100 2  57.60 / 55.60 58.10 / 57.10  55.20 / 55.00 55.10 / 54.50  57.10 / 56.00 53.50 / 59.60 
            
 200 ½  53.80 / 52.20 49.90 / 51.30  56.10 / 54.30 52.30 / 56.00  56.30 / 51.20 48.90 / 52.20 
 200 1  55.20 / 50.50 55.20 / 51.90  54.60 / 55.50 54.00 / 56.40  56.00 / 52.50 51.20 / 55.70 
 200 2  55.90 / 50.60 54.90 / 53.90  52.90 / 53.20 54.20 / 54.00  54.50 / 50.60 52.30 / 57.40 
            

b=1 40 ½  76.27 / 61.63 77.95 / 57.47  69.43 / 60.14 67.32 / 63.01  65.66 / 61.00 69.57 / 63.18 
 40 1  73.77 / 63.48 72.83 / 59.90  68.53 / 60.27 63.52 / 64.46  64.79 / 62.57 65.29 / 62.71 
 40 2  70.38 / 67.70 72.07 / 62.81  71.49 / 65.95 64.52 / 61.57  64.74 / 63.46 65.91 / 67.62 
            
 60 ½  72.08 / 55.85 71.45 / 56.79  67.19 / 57.55 64.79 / 60.70  64.69 / 57.01 63.87 / 56.56 
 60 1  69.61 / 58.23 68.32 / 64.29  66.75 / 56.63 59.57 / 61.90  61.06 / 60.86 66.67 / 61.29 
 60 2  70.45 / 62.48 65.86 / 62.99  64.50 / 59.39 60.52 / 57.04  63.20 / 63.09 62.72 / 65.22 
            
 100 ½  68.88 / 53.75 68.75 / 57.95  65.50 / 57.42 59.47 / 57.60  60.60 / 57.19 61.52 / 56.69 
 100 1  66.51 / 59.48 63.59 / 60.05  64.39 / 55.68 60.04 / 58.27  56.73 / 56.73 62.29 / 59.19 
 100 2  66.55 / 60.79 66.05 / 62.93  63.91 / 58.32 61.51 / 55.67  60.69 / 58.06 60.95 / 58.88 
            
 200 ½  66.74 / 53.37 59.93 / 52.75  61.52 / 55.24 56.06 / 54.25  58.30 / 54.40 57.19 / 51.66 
 200 1  62.85 / 53.52 57.34 / 56.52  56.03 / 58.85 58.90 / 55.57  55.90 / 52.70 57.99 / 55.38 
 200 2  62.31 / 57.22 58.43 / 59.50  61.01 / 55.40 58.59 / 55.32  55.96 / 54.45 60.98 / 57.17 
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Table 8.10: BP, Coverage for SCIs and CRs for (θ1, θ2), listed as SCI / CR 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  90.55 / 91.36 91.71 / 92.72  92.16 / 93.57 91.27 / 92.39  93.30 / 94.80 93.98 / 94.29 

 40 1  88.53 / 89.74 88.54 / 89.25  89.15 / 90.95 91.24 / 91.84  91.20 / 91.80 90.59 / 91.09 
 40 2  84.87 / 85.77 86.57 / 87.47  87.47 / 87.78 85.01 / 84.91  86.99 / 87.99 88.40 / 89.40 
            
 60 ½  92.98 / 93.98 94.69 / 94.49  91.58 / 92.59 92.89 / 93.69  94.40 / 94.90 95.70 / 96.20 
 60 1  90.90 / 91.36 91.90 / 92.80  91.60 / 92.80 90.59 / 91.79  92.29 / 93.09 91.19 / 92.39 
 60 2  89.00 / 89.00 89.70 / 90.40  90.40 / 90.20 90.08 / 90.38  88.30 / 88.50 90.80 / 90.30 
            
 100 ½  93.50 / 93.70 93.80 / 94.10  92.30 / 93.30 93.89 / 94.39  94.70 / 95.20 95.60 / 96.90 
 100 1  93.70 / 93.60 94.10 / 93.50  92.40 / 92.00 93.49 / 94.09  94.30 / 94.60 94.30 / 93.60 
 100 2  90.90 / 91.10 90.10 / 91.00  91.90 / 91.70 90.50 / 92.00  91.50 / 90.90 92.50 / 93.20 
            
 200 ½  95.50 / 94.90 94.90 / 95.30  94.40 / 94.50 95.30 / 95.50  94.00 / 94.00 95.60 / 95.20 
 200 1  94.10 / 93.60 94.10 / 94.20  93.70 / 92.70 95.10 / 94.80  93.60 / 93.00 94.50 / 93.70 
 200 2  92.60 / 92.70 93.80 / 94.10  93.80 / 94.30 93.40 / 92.30  93.20 / 93.10 94.60 / 95.40 
            

b=1 40 ½  83.51 / 85.82 83.85 / 85.42  84.43 / 87.57 61.25 / 66.14  92.63 / 95.12 89.08 / 90.01 
 40 1  85.36 / 87.39 84.94 / 88.54  84.67 / 85.07 63.89 / 67.67  89.50 / 92.05 88.80 / 91.60 
 40 2  85.61 / 88.29 83.97 / 85.62  82.43 / 84.05 59.13 / 61.39  87.93 / 89.74 85.18 / 89.05 
            
 60 ½  86.93 / 89.13 85.49 / 88.61  88.02 / 87.76 65.18 / 66.73  90.38 / 92.73 91.51 / 91.94 
 60 1  88.49 / 89.42 89.13 / 91.30  87.63 / 87.38 62.79 / 63.15  92.25 / 92.86 91.51 / 93.33 
 60 2  88.80 / 89.61 87.16 / 88.52  87.61 / 87.36 59.48 / 59.13  88.87 / 91.13 86.96 / 89.67 
            
 100 ½  91.64 / 92.99 87.50 / 90.91  91.31 / 90.95 67.92 / 68.67  94.47 / 94.47 91.46 / 93.52 
 100 1  89.87 / 91.42 88.59 / 90.22  91.53 / 92.23 70.25 / 69.19  93.98 / 94.48 91.12 / 91.63 
 100 2  87.53 / 90.05 86.51 / 87.78  89.99 / 89.41 67.35 / 66.49  92.44 / 92.24 89.77 / 91.32 
            
 200 ½  92.38 / 93.04 90.19 / 90.43  93.38 / 92.61 75.95 / 76.13  94.40 / 94.90 94.27 / 94.97 
 200 1  91.82 / 92.86 91.19 / 91.42  92.73 / 92.29 74.04 / 74.04  94.40 / 93.90 93.27 / 94.27 
 200 2  91.61 / 92.68 89.43 / 90.02  92.18 / 91.41 72.18 / 69.56  93.29 / 93.69 92.08 / 92.38 
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Table 8.11: BP, Median SCI Widths for (θ1, θ2), listed as θ1 / θ2 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=½ 40 ½  1.55 / 1.51 1.71 / 1.66  1.79 / 1.29 2.08 / 1.23  1.58 / 1.57 1.64 / 1.69 
 40 1  1.51 / 1.53 1.55 / 1.60  1.73 / 1.31 2.03 / 1.21  1.51 / 1.52 1.55 / 1.54 
 40 2  1.69 / 1.66 1.69 / 1.68  1.86 / 1.49 2.06 / 1.34  1.70 / 1.70 1.66 / 1.69 
            
 60 ½  1.26 / 1.28 1.33 / 1.34  1.43 / 1.05 1.72 / 0.97  1.24 / 1.23 1.27 / 1.28 
 60 1  1.26 / 1.24 1.25 / 1.27  1.41 / 1.06 1.58 / 0.98  1.24 / 1.23 1.25 / 1.25 
 60 2  1.36 / 1.39 1.41 / 1.40  1.54 / 1.23 1.75 / 1.10  1.40 / 1.39 1.36 / 1.34 
            
 100 ½  0.95 / 0.95 0.99 / 0.96  1.08 / 0.79 1.24 / 0.73  0.94 / 0.92 0.94 / 0.93 
 100 1  0.96 / 0.96 0.97 / 0.98  1.07 / 0.83 1.18 / 0.76  0.96 / 0.96 0.95 / 0.94 
 100 2  1.08 / 1.11 1.06 / 1.09  1.21 / 0.96 1.35 / 0.86  1.10 / 1.09 1.07 / 1.05 
            
 200 ½  0.66 / 0.66 0.67 / 0.66  0.73 / 0.56 0.83 / 0.52  0.66 / 0.65 0.66 / 0.64 
 200 1  0.68 / 0.68 0.69 / 0.69  0.75 / 0.59 0.83 / 0.54  0.69 / 0.68 0.67 / 0.68 
 200 2  0.79 / 0.79 0.78 / 0.77  0.86 / 0.69 0.95 / 0.62  0.79 / 0.79 0.76 / 0.76 
            

b=1 40 ½  1.81 / 1.78 1.98 / 2.06  1.82 / 1.42 2.42 / 1.24  1.71 / 1.67 2.15 / 2.23 
 40 1  1.81 / 1.77 2.03 / 2.04  1.86 / 1.34 2.48 / 1.14  1.65 / 1.69 2.04 / 2.06 
 40 2  1.88 / 1.89 1.98 / 1.93  1.95 / 1.45 2.50 / 1.31  1.79 / 1.77 1.99 / 2.00 
            
 60 ½  1.75 / 1.71 1.94 / 1.95  1.78 / 1.20 2.33 / 0.98  1.44 / 1.47 1.99 / 2.11 
 60 1  1.77 / 1.71 1.88 / 1.88  1.78 / 1.14 2.28 / 1.00  1.41 / 1.48 1.82 / 1.85 
 60 2  1.78 / 1.77 1.84 / 1.91  1.84 / 1.25 2.34 / 1.05  1.54 / 1.55 1.90 / 1.83 
            
 100 ½  1.66 / 1.64 1.87 / 1.83  1.65 / 0.88 2.25 / 0.76  1.18 / 1.13 1.69 / 1.69 
 100 1  1.64 / 1.59 1.78 / 1.79  1.64 / 0.89 2.18 / 0.71  1.16 / 1.13 1.53 / 1.58 
 100 2  1.68 / 1.66 1.79 / 1.74  1.70 / 0.95 2.21 / 0.75  1.23 / 1.25 1.59 / 1.53 
            
 200 ½  1.41 / 1.39 1.69 / 1.71  1.39 / 0.61 1.99 / 0.47  0.80 / 0.81 1.21 / 1.16 
 200 1  1.40 / 1.38 1.65 / 1.66  1.40 / 0.60 1.98 / 0.46  0.80 / 0.79 1.09 / 1.03 
 200 2  1.42 / 1.43 1.57 / 1.60  1.46 / 0.66 2.03 / 0.50  0.89 / 0.89 1.09 / 1.07 
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Table 8.12: BP, Median CR Area for (θ1, θ2) 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  2.20 2.81  2.20 2.60  2.48 2,94 

 40 1  2.19 2.53  2.14 2.42  2.24 2.52 
 40 2  2.63 2.80  2.62 2.75  2.69 2.83 
            
 60 ½  1.44 1.76  1.39 1.64  1.50 1.67 
 60 1  1.39 1.59  1.36 1.53  1.42 1.55 
 60 2  1.73 1.94  1.70 1.87  1.75 1.81 
            
 100 ½  0.80 0.92  0.77 0.87  0.80 0.85 
 100 1  0.82 0.91  0.79 0.87  0.82 0.86 
 100 2  1.06 1.12  1.03 1.11  1.05 1.08 
            
 200 ½  0.38 0.42  0.36 0.40  0.38 0.39 
 200 1  0.40 0.44  0.38 0.42  0.41 0.42 
 200 2  0.53 0.57  0.51 0.55  0.54 0.54 
            

b=1 40 ½  2.56 3.60  2.07 2.69  2.33 3.80 
 40 1  2.39 3.55  1.94 2.57  2.10 3.43 
 40 2  2.69 3.31  2.10 2.79  2.33 3.17 
            
 60 ½  2.15 3.05  1.57 2.01  1.59 3.10 
 60 1  2.07 2.79  1.46 1.87  1.46 2.59 
 60 2  2.15 2.82  1.59 2.05  1.64 2.47 
            
 100 ½  1.72 2.47  1.02 1.42  0.97 1.96 
 100 1  1.58 2.35  0.97 1.28  0.90 1.69 
 100 2  1.71 2.31  1.07 1.39  1.01 1.70 
            
 200 ½  1.14 1.96  0.56 0.79  0.43 0.98 
 200 1  1.06 1.77  0.53 0.74  0.39 0.79 
 200 2  1.13 1.72  0.59 0.83  0.49 0.83 
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Table 8.13: BP, Median Bias in Empirical (θ1, θ2), listed as θ1 / θ2 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  0.517 / -0.469 -0.042 / -0.379  -0.632 / 0.197 -0.338 / -0.161  0.483 / 0.051 1.121 / -0.087 

 40 1  -0.324 / -0.422 -0.189 / -0.414  -1.127 / -0.160 -0.046 / -0.310  -0.298 / 0.474 -0.325 / -0.063 
 40 2  0.809 / -0.271 -0.405 / 0.361  -0.531 / 0.342 0.667 / 0.348  -0.065 / 0.146 1.099 / -0.502 
            
 60 ½  0.217 / 0.099 0.632 / -0.882  -0.064 / 0.005 -0.629 / 0.814  0.933 / -0.480 0.470 / 0.357 
 60 1  -0.361 / -0.123 -0.959 / 0.400  -0.246 / -0.123 -0.244 / -0.501  -0.483 / 1.742 0.034 / -0.663 
 60 2  -0.209 / -1.060 -0.406 / -0.610  -0.859 / 0.075 0.276 / -0.332  -0.620 / 0.880 -0.752 / 0.033 
            
 100 ½  0.196 / 0.248 0.400 / -0.150  -0.894 / 0.230 -0.193 / 0.809  1.179 / -0.179 0.211 / -0.036 
 100 1  0.166 / 0.157 0.086 / -0.314  -0.217 / 0.059 -0.305 / 0.227  0.123 / 0.167 -0.756 / 0.364 
 100 2  -0.183 / -0.061 0.729 / -0.071  0.739 / -0.081 0.246 / -0.265  -0.677 / -0.171 0.164 / 0.248 
            
 200 ½  0.104 / 0.088 0.415 / 0.342  -0.145 / 0.603 -0.313 / -0.352  0.376 / -0.200 0.156 / 0.210 
 200 1  -0.430 / 0.069 -0.087 / -0.035  0.148 / 0.068 -0.380 / 0.028  -0.023 / -0.102 -0.113 / 0.257 
 200 2  -0.608 / -0.032 -0.169 / 0.139  -0.401 / -0.108 -0.332 / 0.218  -0.053 / 0.487 0.016 / 0.185 
            

b=1 40 ½  -0.113 / -0.873 0.614 / -0.239  0.082 / -0.037 -0.979 / -0.199  -0.226 / 0.929 -0.001 / -0.774 
 40 1  0.124 / -0.929 -0.407 / 0.494  -0.402 / -0.068 -1.039 / 0.366  0.153 / -0.157 -0.422 / 0.204 
 40 2  -0.229 / 0.685 -0.863 / 0.483  -0.240 / -0.318 -1.030 / -0.026  -0.122 / 0.884 -0.821 / -0.367 
            
 60 ½  0.526 / -0.134 -0.558 / -0.192  -0.354 / 0.272 -1.197 / -0.247  0.230 / -0.246 0.789 / -0.052 
 60 1  -0.023 / 0.232 0.099 / -0.142  -0.572 / 0.677 -0.855 / 0.418  -0.020 / 0.033 -0.001 / -0.774 
 60 2  1.040 / -0.114 0.493 / 0.775  -0.331 / 0.730 -0.760 / 0.383  -0.427 / 0.134 -0.377 / 0.032 
            
 100 ½  -0.207 / 0.202 0.178 / 0.063  0.390 / -0.184 -0.272 / 0.534  -0.088 / 0.157 0.087 / 0.043 
 100 1  -0.649 / 0.532 0.616 / -0.056  0.640 / -0.202 -1.311 / 0.003  0.247 / -0.301 -0.033 / 0.615 
 100 2  0.441 / -0.293 -0.306 / 0.169  0.363 / -0.167 -1.003 / 0.217  0.128 / 0.107 -0.184 / 0.495 
            
 200 ½  -0.550 / 1.079 0.152 / -0.204  -0.418 / 0.596 -0.760 / 0.017  0.089 / -0.003 -0.048 / -0.016 
 200 1  0.442 / 0.080 0.141 / -0.241  -0.071 / -0.125 -0.480 / 0.224  -0.130 / 0.095 -0.410 / 0.326 
 200 2  0.501 / -0.046 -0.321 / 0.258  0.189 / -0.396 -0.400 / 0.060  -0.107 / 0.556 -0.221 / 0.639 
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Table 8.14: BP, Median Bias in Sensitivity and Specificity for Empirical (θ1, θ2), listed as Se / Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  0.045 / 0.002 0.043 / 0.039  -0.011 / 0.048 -0.095 / 0.016  -0.039 / 0.013 0.012 / 0.025 

 40 1  0.080 / -0.182 0.150 / 0.016  0.103 / -0.064 0.162 / -0.007  0.004 / 0.001 0.055 / 0.014 
 40 2  0.182 / 0.041 -0.007 / 0.116  0.018 / 0.048 -0.034 / 0.016  -0.007 / 0.051 -0.030 / 0.064 
            
 60 ½  0.130 / 0.018 0.100 / -0.159  0.153 / 0.036 -0.088 / -0.032  0.054 / 0.001 0.005 / 0.039 
 60 1  0.064 / -0.016 0.233 / -0.051  -0.064 / -0.014 0.029 / -0.074  0.071 / -0.016 0.088 / -0.036 
 60 2  0.130 / -0.182 0.175 / -0.134  0.103 / -0.114 0.037 / -0.007  0.054 / 0.051 0.030 / -0.086 
            
 100 ½  -0.052 / 0.057 0.165 / 0.071  -0.003 / -0.050 -0.120 / 0.048  0.016 / -0.010 0.037 / 0.003 
 100 1  -0.010 / 0.018 0.040 / 0.056  0.003 / 0.006 -0.158 / 0.053  0.004 / -0.009 0.055 / 0.024 
 100 2  0.047 / -0.004 -0.033 / 0.025  -0.036 / 0.026 0.038 / 0.032  -0.000 / 0.021 -0.024 / 0.064 
            
 200 ½  -0.102 / 0.035 -0.033 / 0.056  -0.006 / -0.011 -0.006 / -0.057  0.015 / -0.047 0.036 / 0.011 
 200 1  0.060 / -0.002 -0.010 / 0.016  -0.007 / 0.006 0.052 / -0.017  -0.006 / -0.019 -0.045 / -0.006 
 200 2  0.039 / -0.019 0.101 / 0.040  0.002 / 0.041 0.046 / 0.017  0.037 / 0.021 -0.031 / 0.003 
            

b=1 40 ½  0.310 / -0.467 0.052 / 0.117  0.139 / 0.037 0.161 / -0.077  0.053 / -0.047 0.088 / -0.106 
 40 1  0.110 / -0.209 0.238 / -0.052  0.111 / 0.030 -0.218 / -0.069  0.075 / -0.055 0.059 / 0.113 
 40 2  0.162 / 0.110 0.227 / -0.268  0.100 / 0.153 0.158 / 0.154  -0.060 / 0.068 -0.026 / 0.009 
            
 60 ½  0.010 / 0.116 0.338 / -0.102  -0.039 / 0.005 0.132 / -0.144  0.125 / -0.005 0.009 / -0.012 
 60 1  0.077 / 0.107 0.071 / 0.048  0.044 / 0.030 -0.001 / 0.165  0.092 / 0.079 0.093 / -0.137 
 60 2  0.035 / -0.059 -0.212 / 0.248  -0.164 / 0.180 0.032 / 0.081  0.075 / 0.095 0.009 / 0.113 
            
 100 ½  -0.013 / 0.038 0.014 / 0.136  0.034 / -0.013 -0.121 / 0.110  0.125 / 0.024 -0.076 / -0.064 
 100 1  0.070 / -0.039 -0.002 / 0.148  0.031 / 0.130 0.032 / -0.029  0.045 / 0.065 -0.041 / 0.063 
 100 2  -0.018 / 0.220 0.099 / 0.075  0.017 / -0.013 -0.066 / 0.019  0.020 / -0.006 -0.020 / 0.103 
            
 200 ½  0.086 / -0.050 0.054 / 0.077  -0.028 / 0.019 0.053 / 0.043  0.006 / -0.013 0.085 / 0.035 
 200 1  -0.020 / 0.051 0.058 / 0.058  0.111 / -0.060 -0.028 / 0.061  0.015 / 0.035 0.079 / -0.017 
 200 2  -0.011 / 0.220 0.129 / 0.075  0.076 / -0.058 0.061 / 0.095  0.006 / 0.024 -0.005 / 0.027 
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Table 8.15: BP, Percent of Overestimation of Empirical Sensitivity and Specificity, listed as % Se / % Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 
b=½ 40 ½  67.8 / 50.3 88.6 / 70.1  37.3 / 62.1 0.0 / 84.0  42.5 / 63.4 57.7 / 85.2 

 40 1  67.5 / 17.6 95.3 / 58.7  95.3 / 36.4 99.8 / 0.8  86.2 / 84.7 92.9 / 86.0 
 40 2  92.4 / 84.3 9.4 / 96.9  53.3 / 72.3 18.7 / 89.9  31.3 / 91.7 31.5 / 70.0 
            
 60 ½  97.8 / 68.6 58.7 / 15.1  100.0 / 88.8 0.1 / 19.6  97.2 / 60.9 72.3 / 78.9 
 60 1  83.1 / 34.9 100.0 / 17.7  0.0 / 28.4 53.9 / 29.9  99.1 / 43.7 85.0 / 14.5 
 60 2  98.1 / 0.3 87.8 / 20.4  80.1 / 32.4 74.3 / 22.2  99.8 / 99.9 59.4 / 32.6 
            
 100 ½  6.0 / 80.7 100.0 / 90.0  48.2 / 20.7 0.2 / 80.9  84.9 / 46.6 94.8 / 54.7 
 100 1  43.4 / 57.5 83.7 / 94.2  65.4 / 56.4 0.0 / 84.7  63.4 / 46.1 97.0 / 88.8 
 100 2  82.1 / 41.2 20.8 / 57.5  15.0 / 73.8 84.6 / 95.3  41.7 / 63.2 4.9 / 98.5 
            
 200 ½  3.9 / 80.2 42.7 / 65.1  44.8 / 48.7 32.9 / 0.7  61.1 / 30.0 97.5 / 73.9 
 200 1  85.2 / 48.4 27.5 / 62.4  44.1 / 55.4 98.0 / 29.2  49.4 / 36.2 11.6 / 34.3 
 200 2  78.8 / 27.9 100.0 / 55.0  55.8 / 91.6 91.8 / 73.4  96.5 / 89.4 5.8 / 70.3 
            

b=1 40 ½  98.2 / 1.5 67.2 / 93.0  90.5 / 71.9 93.6 / 20.3  55.6 / 23.3 94.0 / 6.3 
 40 1  77.3 / 20.2 98.8 / 26.9  98.9 / 64.1 2.4 / 24.7  77.1 / 20.2 95.1 / 99.0 
 40 2  91.5 / 89.5 100.0 / 0.0  80.2 / 99.9 99.9 / 99.9  21.9 / 70.8 49.1 / 90.0 
            
 60 ½  50.4 / 87.7 100.0 / 0.0  33.0 / 57.8 85.5 / 13.2  97.4 / 44.4 81.4 / 40.1 
 60 1  88.9 / 87.0 92.0 / 85.1  82.3 / 60.7 15.4 / 96.9  99.8 / 98.5 88.2 / 1.7 
 60 2  50.7 / 48.1 5.5 / 94.5  20.0 / 79.2 97.5 / 96.7  99.3 / 100.0 68.6 / 100.0 
            
 100 ½  45.8 / 63.0 57.9 / 100.0  94.9 / 49.3 36.5 / 76.9  98.8 / 72.7 47.5 / 26.4 
 100 1  90.0 / 12.6 42.9 / 98.2  76.8 / 98.1 70.9 / 39.1  99.4 / 99.4 2.9 / 97.6 
 100 2  46.0 / 100.0 96.6 / 95.0  75.6 / 41.4 22.6 / 66.8  65.2 / 37.5 33.1 / 99.1 
            
 200 ½  84.7 / 27.0 99.8 / 74.0  31.7 / 70.8 89.1 / 86.7  60.7 / 35.5 100.0 / 92.6 
 200 1  44.2 / 66.8 94.2 / 97.2  99.9 / 0.1 32.8 / 92.5  67.2 / 85.0 97.9 / 6.3 
 200 2  46.5 / 100.0 97.3 / 91.6  76.9 / 25.7 99.2 / 99.3  55.6 / 70.7 36.0 / 76.6 
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Table 8.16: BN, Population Parameters’ Optimal Points, listed as Se / Sp / GYI, AUC = (0.7, 0.7) 

 ρ  b = (0.5, 0.5) b = (1.0, 1.0) b = (0.5, 1.0) b = (1.0, 0.5) b = (1.5, 1.5) b = (1.0, 1.5) b = (1.5, 1.0) 
r = 0.5 (0.00, 0.00)  1.00 / 0.00 / 0.50 0.88 / 0.38 / 0.57 0.90 / 0.29 / 0.55 0.90 / 0.29 / 0.55 0.92 / 0.50 / 0.67 0.91 / 0.43 / 0.63 0.91 / 0.43 / 0.63 

 (0.25, 0.50)  1.00 / 0.00 / 0.50 0.88 / 0.39 / 0.57 0.90 / 0.29 / 0.55 0.90 / 0.29 / 0.55 0.93 / 0.48 / 0.67 0.91 / 0.42 / 0.62 0.91 / 0.42 / 0.62 
 (0.50, 0.25)  1.00 / 0.00 / 0.50 0.91 / 0.29 / 0.55 0.90 / 0.29 / 0.55 0.90 / 0.29 / 0.55 0.93 / 0.42 / 0.67 0.94 / 0.35 / 0.61 0.94 / 0.35 / 0.61 
 (0.50, 0.50)  1.00 / 0.00 / 0.50 0.89 / 0.33 / 0.56 0.90 / 0.29 / 0.55 0.90 / 0.29 / 0.55 0.93 / 0.43 / 0.65 0.93 / 0.36 / 0.61 0.93 / 0.36 / 0.61 
          

r = 1 (0.00, 0.00)  0.50 / 0.88 / 0.38 0.66 / 0.69 / 0.35 0.50 / 0.88 / 0.38 0.50 / 0.88 / 0.38 0.82 / 0.65 / 0.46 0.74 / 0.66 / 0.40 0.74 / 0.66 / 0.40 
 (0.25, 0.50)  0.50 / 0.88 / 0.38 0.65 / 0.71 / 0.36 0.51 / 0.88 / 0.38 0.51 / 0.88 / 0.38 0.81 / 0.63 / 0.45 0.74 / 0.66 / 0.40 0.74 / 0.66 / 0.40 
 (0.50, 0.25)  0.50 / 0.88 / 0.38 0.64 / 0.65 / 0.29 0.50 / 0.88 / 0.38 0.50 / 0.88 / 0.38 0.83 / 0.57 / 0.39 0.76 / 0.57 / 0.34 0.77 / 0.57 / 0.34 
 (0.50, 0.50)  0.50 / 0.88 / 0.38 0.65 / 0.66 / 0.31 0.50 / 0.88 / 0.38 0.50 / 0.88 / 0.38 0.82 / 0.59 / 0.41 0.75 / 0.61 / 0.36 0.75 / 0.61 / 0.36 
          

r = 2 (0.00, 0.00)  0.40 / 0.95 / 0.31 0.38 / 0.89 / 0.16 0.40 / 0.95 / 0.31 0.40 / 0.95 / 0.31 0.59 / 0.80 / 0.20 0.45 / 0.87 / 0.19 0.45 / 0.87 / 0.19 
 (0.25, 0.50)  0.40 / 0.95 / 0.31 0.39 / 0.90 / 0.18 0.40 / 0.95 / 0.31 0.40 / 0.95 / 0.31 0.57 / 0.81 / 0.18 0.44 / 0.87 / 0.18 0.44 / 0.87 / 0.18 
 (0.50, 0.25)  0.40 / 0.95 / 0.31 0.29 / 0.90 / 0.09   0.40 / 0.95 / 0.31   0.40 / 0.95 / 0.31 0.54 / 0.76 / 0.06 0.32 / 0.89 / 0.10 0.32 / 0.89 / 0.10 
 (0.50, 0.50)  0.40 / 0.95 / 0.31 0.33 / 0.90 / 0.12   0.40 / 0.95 / 0.31   0.40 / 0.95 / 0.31 0.53 / 0.78 / 0.10 0.37 / 0.88 / 0.12 0.37 / 0.88 / 0.12 

Note: Red italicized cells refer to illegitimate BN strategies (combination of values were not valid) 
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Table 8.17: BN, Population Parameters’ Optimal Points, listed as Se / Sp / GYI, AUC = (0.75, 0.85) 

 ρ  b = (0.5, 0.5) b = (1.0, 1.0) b = (0.5, 1.0) b = (1.0, 0.5) b = (1.5, 1.5) b = (1.5, 1.0) b = (1.0, 1.5) 
r = 0.5 (0.00, 0.00)     0.78 / 0.78 / 0.70 0.88 / 0.63 / 0.70 0.89 / 0.60 / 0.69 0.78 / 0.78 / 0.67 0.93 / 0.68 / 0.77 0.90 / 0.66 / 0.73 0.92 / 0.64 / 0.74 

 (0.25, 0.50)  0.78 / 0.78 / 0.67 0.88 / 0.63 / 0.69 0.89 / 0.60 / 0.69 0.78 / 0.78 / 0.67 0.93 / 0.66 / 0.76 0.90 / 0.65 / 0.72 0.93 / 0.62 / 0.74 
 (0.50, 0.25)  0.78 / 0.78 / 0.67 0.89 / 0.60 / 0.69 0.89 / 0.60 / 0.69 0.78 / 0.78 / 0.67 0.93 / 0.62 / 0.74 0.90 / 0.60 / 0.70 0.93 / 0.60 / 0.73 
 (0.50, 0.50)  0.78 / 0.78 / 0.67 0.89 / 0.60 / 0.69 0.89 / 0.60 / 0.69 0.78 / 0.78 / 0.67 0.93 / 0.62 / 0.75 0.90 / 0.61 / 0.70 0.93 / 0.60 / 0.73 
          

r = 1 (0.00, 0.00)  0.70 / 0.90 / 0.60 0.77 / 0.79 / 0.56 0.77 / 0.77 / 0.54 0.70 / 0.90 / 0.60 0.87 / 0.78 / 0.64 0.81 / 0.79 / 0.60 0.83 / 0.76 / 0.59 
 (0.25, 0.50)  0.70 / 0.90 / 0.60 0.77 / 0.79 / 0.55 0.77 / 0.77 / 0.54 0.70 / 0.90 / 0.60 0.86 / 0.76 / 0.62 0.80 / 0.79 / 0.59 0.83 / 0.75 / 0.58 
 (0.50, 0.25)  0.70 / 0.90 / 0.60 0.77 / 0.77 / 0.54 0.77 / 0.77 / 0.54 0.70 / 0.90 / 0.60 0.86 / 0.72 / 0.58 0.78 / 0.76 / 0.55 0.85 / 0.71 / 0.56 
 (0.50, 0.50)  0.70 / 0.90 / 0.60 0.77 / 0.77 / 0.54 0.77 / 0.77 / 0.54 0.70 / 0.90 / 0.60 0.86 / 0.72 / 0.58 0.79 / 0.77 / 0.56 0.85 / 0.71 / 0.56 
          

r = 2 (0.00, 0.00)  0.62 / 0.95 / 0.53 0.62 / 0.90 / 0.41 0.51 / 0.95 / 0.41 0.62 / 0.95 / 0.53 0.75 / 0.86 / 0.47 0.67 / 0.89 / 0.46 0.68 / 0.87 / 0.42 
 (0.25, 0.50)  0.62 / 0.96 / 0.53 0.61 / 0.90 / 0.41 0.52 / 0.94 / 0.41 0.62 / 0.95 / 0.53 0.73 / 0.85 / 0.43 0.66 / 0.89 / 0.44 0.67 / 0.87 / 0.40 
 (0.50, 0.25)  0.62 / 0.95 / 0.53 0.60 / 0.89 / 0.37 0.60 / 0.89 / 0.37 0.62 / 0.95 / 0.53 0.71 / 0.82 / 0.36 0.62 / 0.88 / 0.38 0.69 / 0.82 / 0.33 
 (0.50, 0.50)  0.62 / 0.95 / 0.53 0.60 / 0.89 / 0.38 0.48 / 0.95 / 0.38 0.62 / 0.95 / 0.53 0.71 / 0.83 / 0.37 0.62 / 0.88 / 0.39 0.67 / 0.84 / 0.34 

Note: Red italicized cells refer to illegitimate BN strategies (combination of values were not valid) 
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Table 8.18: BN, Population Parameters’ Optimal Points, listed as Se / Sp / GYI, AUC = (0.9, 0.9) 

 ρ  b = (0.5, 0.5) b = (1.0, 1.0) b = (0.5, 1.0) b = (1.0, 0.5) b = (1.5, 1.5) b = (1.5, 1.0) b = (1.0, 1.5) 
r = 0.5 (0.00, 0.00)  0.83 / 0.83 / 0.75 0.91 / 0.79 / 0.81 0.86 / 0.83 / 0.77 0.86 / 0.83 / 0.77 0.95 / 0.83 / 0.87 0.94 / 0.81 / 0.84 0.94 / 0.81 / 0.84 

 (0.25, 0.50)  0.83 / 0.83 / 0.75 0.91 / 0.78 / 0.80 0.86 / 0.82 / 0.77 0.86 / 0.82 / 0.77 0.95 / 0.80 / 0.85 0.93 / 0.79 / 0.83 0.93 / 0.78 / 0.83 
 (0.50, 0.25)  0.83 / 0.83 / 0.75 0.91 / 0.73 / 0.77 0.90 / 0.70 / 0.75 0.90 / 0.70 / 0.75 0.95 / 0.76 / 0.83 0.93 / 0.74 / 0.80 0.93 / 0.74 / 0.80 
 (0.50, 0.50)  0.83 / 0.83 / 0.75 0.91 / 0.73 / 0.78 0.84 / 0.82 / 0.75 0.84 / 0.82 / 0.75 0.95 / 0.77 / 0.83 0.93 / 0.75 / 0.81 0.93 / 0.75 / 0.81 
          

r = 1 (0.00, 0.00)  0.77 / 0.92 / 0.69 0.85 / 0.88 / 0.73 0.80 / 0.92 / 0.72 0.80 / 0.92 / 0.72 0.92 / 0.88 / 0.80 0.89 / 0.87 / 0.76 0.89 / 0.87 / 0.76 
 (0.25, 0.50)  0.76 / 0.93 / 0.69 0.85 / 0.87 / 0.71 0.79 / 0.92 / 0.71 0.79 / 0.92 / 0.71 0.91 / 0.86 / 0.77 0.88 / 0.86 / 0.74 0.88 / 0.86 / 0.74 
 (0.50, 0.25)  0.77 / 0.92 / 0.69 0.83 / 0.83 / 0.67 0.77 / 0.92 / 0.69 0.77 / 0.92 / 0.69 0.90 / 0.82 / 0.73 0.87 / 0.83 / 0.70 0.87 / 0.83 / 0.70 
 (0.50, 0.50)  0.77 / 0.92 / 0.69 0.84 / 0.84 / 0.68 0.77 / 0.92 / 0.69 0.77 / 0.92 / 0.69 0.90 / 0.83 / 0.73 0.87 / 0.83 / 0.70 0.87 / 0.83 / 0.70 
          

r = 2 (0.00, 0.00)  0.70 / 0.96 / 0.63 0.78 / 0.93 / 0.64 0.74 / 0.96 / 0.66 0.74 / 0.96 / 0.66 0.86 / 0.92 / 0.70 0.82 / 0.92 / 0.67 0.82 / 0.92 / 0.67 
 (0.25, 0.50)  0.71 / 0.96 / 0.64 0.76 / 0.93 / 0.61 0.73 / 0.96 / 0.65 0.73 / 0.96 / 0.65 0.84 / 0.91 / 0.66 0.80 / 0.92 / 0.64 0.80 / 0.92 / 0.64 
 (0.50, 0.25)  0.71 / 0.96 / 0.63 0.73 / 0.91 / 0.54 0.71 / 0.96 / 0.63 0.71 / 0.96 / 0.63 0.82 / 0.88 / 0.58 0.77 / 0/90 / 0.56 0.77 / 0.90 / 0.56 
 (0.50, 0.50)  0.71 / 0.96 / 0.63 0.74 / 0.91 / 0.56 0.71 / 0.96 / 0.63 0.71 / 0.96 / 0.63 0.82 / 0.89 / 0.60 0.77 / 0.90 / 0.58 0.77 / 0.90 / 0.58 

Note: Red italicized cells refer to illegitimate BN strategies (combination of values were not valid) 
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Table 8.19: BN, Number of Times Invalid OOPs, listed as θ3 / θ4 / θ3 & θ4 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  160 / 149 / 0 199 / 189 / 1  223 / 12 / 0 425 / 9 / 0  33 / 30 / 0 55 / 64 / 0 
 40 1  150 / 151 / 0 184 / 198 / 0  247 / 6 / 0 433 / 4 / 0  31 / 26 / 0 48 / 61 / 0 
 40 2  183 / 164 / 0 222 / 201 / 0  285 / 24 / 0 461 / 5 / 0  41 / 26 / 0 52 / 69 / 0 
            
 60 ½  157 / 112 / 0 180 / 156 / 0  193 / 7 / 0 410 / 2 / 0  15 / 12 / 0 39 / 37 / 0 
 60 1  112 / 123 / 0 182 / 168 / 0  207 / 3 / 0 434 / 9 / 0  11 / 11 / 0 31 / 26 / 0 
 60 2  128 / 139 / 0 172 / 164 / 0  221 / 4 / 0 450 / 0 / 0  14 / 16 / 0 34 / 36 / 0 
            
 100 ½  73 / 70 / 0 135 / 133 / 0  162 / 0 / 0 352 / 1 / 0  4 / 3 / 0 16 / 16 / 0 
 100 1  87 / 74 / 0 136 / 143 / 0  144 / 0 / 0 410 / 0 / 0  3 / 1 / 0 13 / 17 / 0 
 100 2  104 / 108 / 0 161 / 147 / 0  176 / 1 / 0 431 / 0 / 0  1 / 7 / 0 24 / 7 / 0 
            
 200 ½  34 / 34 / 0 78 / 78 / 0  90 / 0 / 0 350 / 0 / 0  0 / 0 / 0 2 / 4 / 0 
 200 1  23 / 33 / 0 77 / 58 / 0  71 / 0 / 0 363 / 0 / 0  0 / 0 / 0 0 / 2 / 0 
 200 2  34 / 40 / 0 86 / 100 / 0  92 / 0 / 0 402 / 0 / 0  0 / 0 / 0 5 / 0 / 0 
            

b=1½ 40 ½  17 / 16 / 0 27 / 23 / 0  26 / 3 / 0 57 / 0 / 0  1 / 0 / 0 1 / 1 / 0 
 40 1  18 / 14 / 0 27 / 24 / 0  28 / 0 / 0 55 / 1 / 0  1 / 0 / 0 2 / 4 / 0 
 40 2  32 / 50 / 0 50 / 44 / 1  41 / 4 / 0 72 / 1 / 0  2 / 5 / 0 6 / 3 / 0 
            
 60 ½  2 / 7 / 0 3 / 9 / 0  11 / 0 / 0 28 / 0 / 0  0 / 0 / 0 1 / 0 / 0 
 60 1  2 / 9 / 0 10 / 15 / 0  13 / 0 / 0 18 / 0 / 0  0 / 0 / 0 0 / 2 / 0 
 60 2  17 / 10 / 0 15 / 15 / 0  20 / 0 / 0 39 / 1 / 0  0 / 0 / 0 2 / 0 / 0 
            
 100 ½  0 / 0 / 0 1 / 1 / 0  0 / 0 / 0 9 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
 100 1  0 / 0 / 0 1 / 0 / 0  2 / 0 / 0 7 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
 100 2  1 / 0 / 0 2 / 0 / 0  1 / 0 / 0 8 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
            
 200 ½  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
 200 1  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 1 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
 200 2  0 / 0 / 0 1 / 0 / 0  0 / 0 / 0 0 / 0 / 0  0 / 0 / 0 0 / 0 / 0 
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Table 8.20: BN, Median Bias in (θ3, θ4), listed as θ3 / θ4 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  0.044 / 0.036 0.012 / -0.030  0.295 / -0.092 0.927 / 0.108  0.015 / 0.039 0.031 / -0.035 
 40 1  -0.021 / 0.007 -0.006 / -0.062  0.252 / -0.084 0.860 / -0.102  0.004 / -0.011 -0.004 / -0.013 
 40 2  -0.044 / 0.024 -0.088 / -0.032  0.183 / -0.106 0.826 / -0.121  -0.007 / -0.030 -0.029 / -0.017 
            
 60 ½  -0.009 / 0.014 -0.023 / 0.053  0.214 / -0.076 0.924 / -0.084  0.029 / 0.004 0.035 / 0.006 
 60 1  -0.083 / 0.048 -0.004 / 0.002  0.204 / -0.090 0.817 / -0.083  -0.003 / -0.014 -0.003 / -0.005 
 60 2  -0.023 / 0.013 -0.047 / -0.021  0.163 / -0.076 0.724 / -0.114  -0.027 / 0.004 -0.027 / -0.010 
            
 100 ½  0.006 / 0.002 -0.002 / 0.011  0.097 / -0.040 0.705 / -0.068  -0.001 / 0.030 0.008 / -0.005 
 100 1  -0.019 / 0.020 -0.028 / -0016  0.114 / -0.040 0.562 / -0.052  -0.015 / 0.018 0.003 / -0.001 
 100 2  -0.048 / -0.009 -0.044 / -0.022  0.111 / -0.051 0.605 / -0.074  -0.007 / 0.011 -0.016 / -0.005 
            
 200 ½  -0.021 / 0.020 -0.004 / 0.005  0.063 / -0.016 0.439 / -0.036  0.010 / 0.007 -0.014 / 0.025 
 200 1  -0.023 / 0.016 0.002 / -0.012  0.024 / -0.007 0.420 / -0.033  0.005 / -0.000 -0.010 / 0.016 
 200 2  -0.010 / 0.001 0.010 / -0.028  0.029 / -0.031 0.384 / -0.045  -0.002 / 0.006 -0.000 / 0.013 
            

b=1½ 40 ½  0.024 / 0.027 0.024 / 0.022  0.039 / 0.016 0.009 / -0.008  0.023 / 0.024 0.014 / 0.019 
 40 1  0.014 / 0.013 0.025 / -0.002  0.033 / -0.000 0.005 / 0.001  0.008 / -0.019 0.003 / -0.002 
 40 2  -0.007 / 0.007 0.023 / -0.004  0.015 / -0.014 0.007 / -0.027  0.002 / -0.007 -0.020 / -0.008 
            
 60 ½  0.011 / 0.016 0.017 / 0.011  0.028 / 0.008 0.041 / 0.001  -0.010 / 0.018 0.019 / 0.012 
 60 1  0.008 / 0.012 0.013 / 0.003  0.009 / -0.003 0.015 / -0.005  0.003 / 0.014 0.002 / 0.012 
 60 2  0.023 / -0.006 0.008 / 0.022  0.000 / -0.010 0.005 / -0.004  -0.004 / 0.014 0.003 / -0.005 
            
 100 ½  0.007 / 0.001 -0.001 / 0.029  0.014 / 0.006 0.008 / -0.002  0.001 / 0.022 0.005 / 0.008 
 100 1  0.011 / 0.023 0.009 / 0.002  0.011 / 0.002 0.028 / -0.005  0.002 / 0.008 0.005 / 0.014 
 100 2  0.006 / -0.005 0.002 / 0.008  0.008 / 0.003 -0.012 / -0.002  0.007 / -0.010 -0.007 / 0.005 
            
 200 ½  0.002 / 0.005 -0.004 / 0.005  0.014 / -0.001 0.011 / 0.001  -0.001 / 0.004 -0.008 / 0.006 
 200 1  0.000 / 0.008 -0.004 / -0.001  0.005 / 0.003 0.011 / 0.001  0.001 / 0.005 0.009 / 0.000 
 200 2  -0.001 / -0.007 0.008 / 0.004  0.012 / -0.003 0.001 / 0.001  -0.002 / 0.007 -0.001 / -0.003 
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Table 8.21: BN, Median RMSE in (θ3, θ4), listed as θ3 / θ4 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  0.548 / 0.550 0.564 / 0.564  0.632 / 0.397 1.078 / 0.353  0.508 / 0.491 0.549 / 0.570 
 40 1  0.543 / 0.533 0.561 / 0.591  0.618 / 0.375 0.999 / 0.319  0.478 / 0.471 0.554 / 0.564 
 40 2  0.534 / 0.547 0.613 / 0.606  0.597 / 0.380 1.001 / 0.356  0.481 / 0.469 0.595 / 0.592 
            
 60 ½  0.498 / 0.505 0.532 / 0.522  0.577 / 0.334 1.039 / 0.292  0.441 / 0.441 0.494 / 0.498 
 60 1  0.509 / 0.489 0.535 / 0.542  0.566 / 0.317 0.961 / 0.280  0.405 / 0.412 0.485 / 0.496 
 60 2  0.507 / 0.490 0.572 /0.556  0.535 / 0.327 0.904 / 0.303  0.404 / 0.414 0.538 / 0.522 
            
 100 ½  0.477 / 0.476 0.493 / 0.493  0.504 / 0.262 0.864 / 0.218  0.354 / 0.343 0.431 / 0.428 
 100 1  0.459 / 0.456 0.497 / 0.494  0.489 / 0.248 0.758 / 0.192  0.329 / 0.326 0.416 / 0.416 
 100 2  0.468 / 0.466 0.518 / 0.502  0.480 / 0.256 0.793 / 0.217  0.328 / 0.320 0.438 / 0.446 
            
 200 ½  0.407 / 0.407 0.431 / 0.446  0.417 / 0.183 0.643 / 0.137  0.248 / 0.251 0.312 / 0.304 
 200 1  0.378 / 0.382 0.423 / 0.415  0.396 / 0.165 0.618 / 0.129  0.221 / 0.224 0.302 / 0.289 
 200 2  0.401 / 0.398 0.442 / 0.444  0.399 / 0.177 0.616 / 0.137  0.225 / 0.229 0.317 / 0.319 
            

b=1½ 40 ½  0.342 / 0.348 0.356 / 0.362  0.383 / 0.265 0.444 / 0.255  0.336 / 0.331 0.338 / 0.339 
 40 1  0.320 / 0.326 0.350 / 0.341  0.356 / 0.251 0.420 / 0.223  0.296 / 0.297 0.318 / 0.321 
 40 2  0.330 / 0.331 0.355 / 0.370  0.358 / 0.262 0.440 / 0.242  0.299 / 0.310 0.250 / 0.342 
            
 60 ½  0.299 / 0.296 0.302 / 0.313  0.335 / 0.230 0.387 / 0.198  0.275 / 0.270 0.284 / 0.274 
 60 1  0.275 / 0.273 0.290 / 0.291  0.302 / 0.202 0.363 / 0.177  0.242 / 0.238 0.256 / 0.251 
 60 2  0.272 / 0.280 0.304 / 0.304  0.309 / 0.208 0.377 / 0.188  0.238 / 0.240 0.269 / 0.272 
            
 100 ½  0.233 / 0.231 0.244 / 0.244  0.260 / 0.172 0.309 / 0.151  0.203 / 0.200 0.210 / 0.209 
 100 1  0.217 / 0.211 0.224 / 0.224  0.240 / 0.156 0.285 / 0.134  0.178 / 0.179 0.189 / 0.186 
 100 2  0.220 / 0.217 0.238 / 0.229  0.239 / 0.150 0.302 / 0.134  0.179 / 0.182 0.201 / 0.199 
            
 200 ½  0.163 / 0.159 0.166 / 0.164  0.183 / 0.119 0.224 / 0.107  0.145 / 0.144 0.145 / 0.144 
 200 1  0.146 / 0.148 0.152 / 0.148  0.164 / 0.105 0.205 / 0.095  0.126 / 0.125 0.127 / 0.130 
 200 2  0.151 / 0.148 0.156 / 0.155  0.165 / 0.106 0.212 / 0.095  0.124 / 0.120 0.128 / 0.128 



www.manaraa.com

    129

Table 8.22: BN, Median Bias in Sensitivity and Specificity for (θ3, θ4), listed as Se / Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  0.036 / 0.049 0.057 / 0.053  0.033 / 0.031 0.022 / 0.028  0.018 / 0.016 0.023 / 0.021 
 40 1  0.034 / 0.052 0.032 / 0.052  0.015 / 0.027 0.019 / 0.028  0.015 / 0.017 0.016 / 0.021 
 40 2  0.025 / 0.057 0.030 / 0.077  0.017 / 0.037 0.016 / 0.031  0.014 / 0.020 0.015 / 0.030 
            
 60 ½  0.035 / 0.031 0.038 / 0.033  0.015 / 0.018 0.020 / 0.021  0.011 / 0.010 0.016 / 0.013 
 60 1  0.024 / 0.029 0.026 / 0.045  0.017 / 0.019 0.006 / 0.016  0.006 / 0.009 0.013 / 0.017 
 60 2  0.023 / 0.042 0.025 / 0.055  0.007 / 0.020 0.009 / 0.019  0.006 / 0.013 0.011 / 0.021 
            
 100 ½  0.018 / 0.018 0.023 / 0.026  0.012 / 0.009 0.006 / 0.011  0.007 / 0.007 0.008 / 0.007 
 100 1  0.011 / 0.021 0.020 / 0.026  0.009 / 0.009 0.005 / 0.010  0.003 / 0.005 0.008 / 0.011 
 100 2  0.013 / 0.026 0.010 / 0.032  0.004 / 0.014 0.010 / 0.015  0.005 / 0.008 0.005 / 0.012 
            
 200 ½  0.013 / 0.006 0.011 / 0.009  0.008 / 0.006 0.005 / 0.006  0.003 / 0.004 0.004 / 0.004 
 200 1  0.008 / 0.011 0.009 / 0.012  0.003 / 0.007 0.001 / 0.002  0.002 / 0.004 0.002 / 0.006 
 200 2  0.006 / 0.015 0.008 / 0.014  0.004 / 0.006 0.005 / 0.006  0.002 / 0.005 0.004 / 0.006 
            

b=1½ 40 ½  0.013 / 0.031 0.016 / 0.029  0.011 / 0.021 0.011 / 0.023  0.010 / 0.014 0.008 / 0.018 
 40 1  0.009 / 0.021 0.016 / 0.041  0.006 / 0.024 0.009 / 0.014  0.004 / 0.011 0.008 / 0.013 
 40 2  0.006 / 0.035 0.013 / 0.036  0.007 / 0.020 0.010 / 0.031  0.006 / 0.018 0.007 / 0.026 
            
 60 ½  0.008 / 0.014 0.020 / 0.019  0.007 / 0.012 0.007 / 0.016  0.004 / 0.007 0.007 / 0.009 
 60 1  0.006 / 0.020 0.009 / 0.015  0.005 / 0.012 0.007 / 0.012  0.002 / 0.009 0.003 / 0.011 
 60 2  0.004 / 0.023 0.007 / 0.028  0.004 / 0.010 0.007 / 0.018  0.004 / 0.011 0.007 / 0.026 
            
 100 ½  0.005 / 0.007 0.007 / 0.011  0.003 / 0.008 0.006 / 0.007  0.003 / 0.006 0.003 / 0.007 
 100 1  0.003 / 0.008 0.003 / 0.008  0.002 / 0.009 0.003 / 0.012  0.002 / 0.004 0.002 / 0.006 
 100 2  0.003 / 0.010 0.003 / 0.019  0.002 / 0.008 0.003 / 0.008  0.000 / 0.005 0.001 / 0.009 
            
 200 ½  0.002 / 0.003 0.003 / 0.004  0.002 / 0.003 0.002 / 0.006  0.001 / 0.002 0.001 / 0.002 
 200 1  0.002 / 0.008 0.002 / 0.008  0.002 / 0.004 0.001 / 0.005  0.001 / 0.004 0.001 / 0.003 
 200 2  0.002 / 0.004 0.001 / 0.004  0.001 / 0.004 0.002 / 0.005  0.000 / 0.003 0.000 / 0.004 
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Table 8.23: BN, Median RMSE in Sensitivity and Specificity for (θ3, θ4), listed as Se / Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  0.121 / 0.098 0.135 / 0.122  0.087 / 0.068 0.091 / 0.079  0.059 / 0.046 0.066 / 0.059 
 40 1  0.114 / 0.103 0.130 / 0.123  0.076 / 0.069 0.078 / 0.082  0.055 / 0.047 0.064 / 0.060 
 40 2  0.113 / 0.109 0.127 / 0.132  0.077 / 0.075 0.083 / 0.090  0.055 / 0.051 0.063 / 0.065 
            
 60 ½  0.106 / 0.083 0.122 / 0.102  0.071 / 0.057 0.076 / 0.065  0.051 / 0.038 0.057 / 0.0490 
 60 1  0.095 / 0.085 0.109 / 0.101  0.064 / 0.057 0.068 / 0.065  0.045 / 0.039 0.051 / 0.050 
 60 2  0.093 / 0.091 0.108 / 0.111  0.063 / 0.062 0.066 / 0.072  0.045 / 0.043 0.052 / 0.056 
            
 100 ½  0.081 / 0.066 0.095 / 0.081  0.056 / 0.043 0.058 / 0.052  0.039 / 0.030 0.045 / 0.038 
 100 1  0.076 / 0.067 0.087 / 0.081  0.049 / 0.044 0.054 / 0.052  0.035 / 0.031 0.040 / 0.039 
 100 2  0.076 / 0.074 0.091 / 0.091  0.050 / 0.050 0.052 / 0.058  0.035 / 0.035 0.040 / 0.045 
            
 200 ½  0.059 / 0.049 0.069 / 0.060  0.040 / 0.031 0.042 / 0.037  0.028 / 0.021 0.031 / 0.027 
 200 1  0.053 / 0.047 0.061 / 0.059  0.036 / 0.032 0.038 / 0.037  0.025 / 0.022 0.028 / 0.028 
 200 2  0.055 / 0.053 0.064 / 0.066  0.036 / 0.036 0.037 / 0.043  0.024 / 0.025 0.028 / 0.032 
            

b=1½ 40 ½  0.065 / 0.100 0.071 / 0.118  0.050 / 0.072 0.055 / 0.088  0.035 / 0.049 0.042 / 0.066 
 40 1  0.063 / 0.104 0.071 / 0.123  0.048 / 0.078 0.052 / 0.091  0.033 / 0.050 0.039 / 0.068 
 40 2  0.071 / 0.120 0.076 / 0.140  0.051 / 0.087 0.057 / 0.110  0.034 / 0.057 0.040 / 0.077 
            
 60 ½  0.053 / 0.082 0.059 / 0.097  0.042 / 0.060 0.047 / 0.071  0.029 / 0.041 0.034 / 0.053 
 60 1  0.051 / 0.085 0.058 / 0.099  0.038 / 0.062 0.043 / 0.076  0.027 / 0.042 0.032 / 0.057 
 60 2  0.056 / 0.096 0.062 / 0.118  0.040 / 0.073 0.046 / 0.088  0.028 / 0.048 0.033 / 0.065 
            
 100 ½  0.040 / 0.063 0.044 / 0.074  0.032 / 0.048 0.036 / 0.056  0.023 / 0.032 0.027 / 0.042 
 100 1  0.039 / 0.065 0.043 / 0.078  0.030 / 0.048 0.033 / 0.059  0.021 / 0.033 0.025 / 0.045 
 100 2  0.042 / 0.075 0.047 / 0.089  0.031 / 0.057 0.034 / 0.069  0.022 / 0.038 0.025 / 0.051 
            
 200 ½  0.028 / 0.045 0.032 / 0.053  0.023 / 0.033 0.026 / 0.040  0.017 / 0.023 0.019 / 0.030 
 200 1  0.027 / 0.047 0.029 / 0.055  0.021 / 0.035 0.024 / 0.042  0.015 / 0.024 0.018 / 0.031 
 200 2  0.028 / 0.054 0.032 / 0.061  0.021 / 0.040 0.024 / 0.050  0.015 / 0.027 0.017 / 0.036 
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Table 8.24: BN, Percent of Overestimation of Sensitivity and Specificity, listed as % Se / % Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  67.00 / 71.49 70.31 / 68.52  64.71 / 72.29 62.54 / 66.08  64.14 / 66.38 67.42 / 67.20 
 40 1  63.81 / 61.87 61.33 / 69.26  60.78 / 67.74 65.01 / 66.61  61.40 / 65.54 62.18 / 67.79 
 40 2  61.87 / 76.88 62.05 / 73.83  58.03 / 73.52 59.18 / 64.79  62.38 / 66.88 60.86 / 69.97 
            
 60 ½  65.80 / 68.40 64.01 / 65.81  60.25 / 65.63 61.22 / 64.80  59.82 / 60.23 62.99 / 61.47 
 60 1  62.88 / 66.14 61.69 / 72.62  60.63 / 64.94 54.55 / 62.92  57.26 / 62.58 60.66 / 64.26 
 60 2  63.17 / 72.71 59.04 / 69.88  56.00 / 65.03 55.27 / 60.36  56.60 / 64.74 57.53 / 66.67 
            
 100 ½  60.44 / 63.36 60.38 / 64.75  59.55 / 61.22 53.94 / 61.05  57.30 / 58.61 57.64 / 60.43 
 100 1  56.85 / 65.32 60.33 / 65.19  56.66 / 60.05 54.75 / 59.83  53.71 / 59.24 59.69 / 64.64 
 100 2  59.39 / 67.01 57.08 / 68.79  54.07 / 62.45 58.35 / 60.98  57.96 / 61.79 55.11 / 60.17 
            
 200 ½  60.94 / 57.08 58.41 / 57.70  59.45 / 57.91 54.46 / 57.08  55.30 / 59.30 55.94 / 57.44 
 200 1  57.52 / 60.70 56.76 / 58.73  53.61 / 60.39 52.28 / 53.06  53.90 / 57.00 54.01 / 58.22 
 200 2  56.37 / 63.61 55.28 / 62.16  55.29 / 57.60 57.69 / 56.19  53.80 / 57.90 56.38 / 58.59 
            

b=1½ 40 ½  60.29 / 66.49 60.42 / 60.74  59.63 / 63.75 58.43 / 60.98  64.93 / 63.03 58.92 / 61.32 
 40 1  56.51 / 60.23 59.96 / 65.23  57.61 / 63.37 59.11 / 57.42  55.66 / 58.86 59.86 / 58.85 
 40 2  54.79 / 63.94 59.43 / 63.29  56.96 / 60.63 58.79 / 62.14  57.20 / 64.15 59.23 / 65.09 
            
 60 ½  58.73 / 58.43 58.20 / 58.30  57.33 / 60.16 56.89 / 60.60  57.80 / 58.10 58.86 / 57.86 
 60 1  55.41 / 59.86 57.74 / 58.36  56.13 / 57.65 58.45 / 57.94  54.20 / 59.10 55.41 / 58.92 
 60 2  54.16 / 62.18 54.85 / 61.24  55.00 / 56.53 57.40 / 58.96  55.50 / 61.70 53.51 / 60.12 
            
 100 ½  57.20 / 54.70 58.52 / 57.62  55.60 / 58.20 57.32 / 55.10  55.80 / 60.40 57.10 / 57.00 
 100 1  53.60 / 56.70 54.35 / 55.76  52.81 / 57.52 54.98 / 60.02  55.30 / 55.00 54.00 / 56.40 
 100 2  53.35 / 55.86 53.41 / 60.82  53.75 / 56.56 55.75 / 55.44  50.00 / 58.50 53.20 / 59.00 
            
 200 ½  52.60 / 53.40 53.80 / 55.70  54.90 / 55.60 52.50 / 57.40  52.70 / 54.30 51.50 / 52.70 
 200 1  52.30 / 57.10 53.90 / 57.80  55.20 / 54.80 51.45 / 55.36  54.20 / 57.60 53.00 / 54.30 
 200 2  53.50 / 53.30 51.55 / 53.45  51.80 / 53.60 53.00 / 54.80  50.30 / 52.90 51.20 / 55.90 
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Table 8.25: BN, Coverage for SCIs and CRs for (θ3, θ4), listed as SCI / CR 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  86.98 / 88.71 86.62 / 89.56  81.96 / 83.92 62.54 / 66.08  87.83 / 89.43 86.72 / 88.65 
 40 1  85.55 / 88.70 87.54 / 88.03  85.54 / 86.88 68.21 / 70.34  89.61 / 91.09 90.01 / 91.81 
 40 2  85.91 / 88.06 85.27 / 87.18  86.11 / 86.54 71.91 / 75.66  91.43 / 92.71 88.62 / 89.65 
            
 60 ½  87.69 / 89.47 86.45 / 86.60  88.63 / 88.25 61.05 / 63.10  88.80 / 90.75 88.64 / 90.15 
 60 1  86.80 / 89.28 87.23 / 89.08  86.84 / 87.97 68.98 / 69.52  91.00 / 92.94 90.99 / 92.58 
 60 2  88.13 / 89.36 87.20 / 88.70  88.00 / 88.00 70.36 / 72.91  92.16 / 93.81 90.86 / 92.37 
            
 100 ½  88.80 / 89.50 85.93 / 89.89  89.62 / 88.31 75.58 / 74.96  91.14 / 91.74 89.05 / 90.70 
 100 1  87.96 / 88.92 87.79 / 89.32  89.95 / 90.07 77.46 / 76.27  93.78 / 94.28 91.34 / 92.99 
 100 2  90.36 / 91.12 86.56 / 88.01  91.25 / 91.37 75.87 / 76.27  94.56 / 95.26 91.85 / 93.19 
            
 200 ½  92.81 / 92.49 89.69 / 91.11  92.97 / 91.98 81.23 / 80.31  92.00 / 92.30 91.15 / 91.95 
 200 1  91.42 / 91.95 91.45 / 91.91  92.36 / 92.25 82.73 / 81.79  94.70 / 94.90 92.59 / 92.69 
 200 2  92.33 / 93.74 89.43 / 90.54  93.17 / 92.29 85.45 / 84.62  94.70 / 94.30 93.87 / 94.67 
            

b=1½ 40 ½  88.31 / 88.52 88.42 / 89.05  88.57 / 89.50 86.64 / 87.80  87.27 / 88.28 86.87 / 87.27 
 40 1  89.46 / 91.53 89.46 / 90.52  88.48 / 90.02 89.72 / 90.57  91.49 / 92.29 91.45 / 92.45 
 40 2  90.31 / 91.83 92.06 / 92.39  92.46 / 94.14 91.91 / 92.99  93.76 / 94.06 93.84 / 94.95 
            
 60 ½  89.30 / 89.61 89.88 / 90.38  87.97 / 88.47 87.24 / 87.65  89.30 / 89.30 88.79 / 89.89 
 60 1  92.11 / 92.11 91.90 / 92.82  90.58 / 91.69 91.96 / 92.46  91.60 / 92.90 92.59 / 92.89 
 60 2  91.57 / 92.50 93.51 / 93.81  91.43 / 91.43 92.50 / 93.02  93.90 / 93.70 94.89 / 96.19 
            
 100 ½  91.60 / 91.30 90.08 / 90.98  93.00 / 92.70 90.62 / 90.72  91.40 / 91.20 90.90 / 92.50 
 100 1  93.20 / 93.50 93.19 / 93.39  90.98 / 91.68 91.54 / 91.94  94.40 / 93.40 94.40 / 94.80 
 100 2  93.69 / 93.59 92.89 / 93.79  94.39 / 94.79 94.46 / 94.86  93.70 / 93.90 94.30 / 94.20 
            
 200 ½  92.80 / 92.60 93.90 / 93.20  94.00 / 94.20 92.90 / 93.90  93.20 / 92.50 94.70 / 94.90 
 200 1  94.30 / 94.70 95.00 / 95.50  93.70 / 93.30 93.69 / 94.09  94.80 / 94.50 94.00 / 94.40 
 200 2  94.90 / 94.20 96.10 / 95.80  93.80 / 93.70 94.30 / 95.30  96.20 / 95.40 95.70 / 95.90 
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Table 8.26: BN, Median SCI Widths for (θ3, θ4), listed as θ3 / θ4 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  1.80 / 1.78 1.96 / 1.95  1.92 / 1.42 2.45 / 1.29  1.76 / 1.71 1.99 / 2.06 
 40 1  1.86 / 1.82 1.96 / 2.04  1.87 / 1.37 2.39 / 1.14  1.63 / 1.66 2.06 / 2.06 
 40 2  1.83 / 1.79 2.10 / 2.12  1.88 / 1.42 2.45 / 1.28  1.70 / 1.65 2.24 / 2.23 
            
 60 ½  1.74 / 1.77 1.88 / 1.88  1.84 / 1.23 2.26 / 1.03  1.54 / 1.55 1.80 / 1.91 
 60 1  1.78 / 1.68 1.90 / 1.88  1.76 / 1.13 2.27 / 1.00  1.42 / 1.47 1.81 / 1.88 
 60 2  1.73 / 1.70 2.02 / 1.99  1.75 / 1.18 2.29 / 1.06  1.49 / 1.47 2.06 / 1.98 
            
 100 ½  1.66 / 1.65 1.83 / 1.76  1.69 / 0.92 2.21 / 0.78  1.25 / 1.22 1.58 / 1.57 
 100 1  1.63 / 1.62 1.79 / 1.79  1.63 / 0.88 2.15 / 0.70  1.17 / 1.16 1.55 / 1.56 
 100 2  1.62 / 1.61 1.85 / 1.84  1.62 / 0.91 2.17 / 0.75  1.17 / 1.16 1.72 / 1.70 
            
 200 ½  1.45 / 1.45 1.60 / 1.63  1.46 / 0.65 1.94 / 0.49  0.88 / 0.87 1.15 / 1.10 
 200 1  1.39 / 1.37 1.57 / 1.59  1.40 / 0.59 1.94 / 0.46  0.79 / 0.80 1.08 / 1.02 
 200 2  1.43 / 1.44 1.63 / 1.68  1.41 / 0.61 1.93 / 0.48  0.81 / 0.80 1.18 / 1.18 
            

b=1½ 40 ½  1.16 / 1.16 1.21 / 1.24  1.30 / 0.91 1.51 / 0.86  1.10 / 1.07 1.17 / 1.14 
 40 1  1.10 / 1.11 1.20 / 1.21  1.23 / 0.85 1.49 / 0.78  1.01 / 1.04 1.12 / 1.13 
 40 2  1.15 / 1.15 1.29 / 1.35  1.27 / 0.92 1.54 / 0.86  1.06 / 1.07 1.27 / 1.24 
            
 60 ½  1.03 / 1.01 1.06 / 1.08  1.13 / 0.77 1.33 / 0.67  0.96 / 0.93 0.95 / 0.92 
 60 1  0.96 / 0.95 1.02 / 1.03  1.05 / 0.69 1.30 / 0.62  0.83 / 0.83 0.90 / 0.87 
 60 2  0.98 / 0.99 1.08 / 1.08  1.09 / 0.70 1.38 / 0.66  0.83 / 0.84 0.97 / 1.00 
            
 100 ½  0.81 / 0.80 0.83 / 0.82  0.92 / 0.61 1.11 / 0.53  0.72 / 0.71 0.72 / 0.72 
 100 1  0.76 / 0.74 0.77 / 0.79  0.82 / 0.54 1.05 / 0.48  0.64 / 0.64 0.67 / 0.66 
 100 2  0.78 / 0.77 0.83 / 0.82  0.87 / 0.53 1.13 / 0.47  0.63 / 0.64 0.70 / 0.69 
            
 200 ½  0.58 / 0.58 0.59 / 0.58  0.66 / 0.44 0.79 / 0.38  0.51 / 0.51 0.51 / 0.51 
 200 1  0.52 / 0.52 0.54 / 0.54  0.58 / 0.38 0.74 / 0.34  0.45 / 0.45 0.46 / 0.47 
 200 2  0.53 / 0.52 0.55 / 0.55  0.48 / 0.38 0.79 / 0.34  0.44 / 0.44 0.46 / 0.47 
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Table 8.27: BN, Median CR Area for (θ3, θ4) 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  2.49 3.35  2.07 2.68  2.22 3.24 
 40 1  2.54 3.37  1.99 2.44  2.13 3.29 
 40 2  2.60 3.83  2.11 2.83  2.31 3.92 
            
 60 ½  2.12 2.77  1.57 2.00  1.62 2.48 
 60 1  2.02 2.84  1.41 1.91  1.47 2.55 
 60 2  2.13 3.22  1.52 2.11  1.60 3.01 
            
 100 ½  1.70 2.35  1.04 1.42  1.00 1.68 
 100 1  1.60 2.36  0.95 1.25  0.89 1.69 
 100 2  1.71 2.51  1.06 1.36  0.97 2.04 
            
 200 ½  1.13 1.75  0.58 0.79  0.47 0.86 
 200 1  1.05 1.67  0.53 0.73  0.39 0.79 
 200 2  1.18 1.88  0.57 0.77  0.44 0.98 
            

b=1½ 40 ½  1.13 1.42  1.03 1.24  1.06 1.28 
 40 1  1.04 1.33  0.93 1.12  0.97 1.22 
 40 2  1.12 1.60  1.04 1.28  1.08 1.50 
            
 60 ½  0.85 1.02  0.74 0.84  0.73 0.83 
 60 1  0.75 0.95  0.62 0.76  0.61 0.73 
 60 2  0.79 1.05  0.66 0.86  0.64 0.89 
            
 100 ½  0.53 0.65  0.45 0.53  0.41 0.48 
 100 1  0.44 0.57  0.37 0.46  0.34 0.40 
 100 2  0.48 0.61  0.38 0.49  0.35 0.44 
            
 200 ½  0.26 0.31  0.22 0.27  0.20 0.23 
 200 1  0.21 0.26  0.18 0.23  0.17 0.18 
 200 2  0.22 0.27  0.18 0.24  0.16 0.19 
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Table 8.28: BN, Median Bias in Empirical (θ3, θ4), listed as θ3 / θ4 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  -1.037 / -0.630 0.560 / 0.346  -0.040 / -0.087 1.246 / -0.305  -0.557 / -0.213 -0.274 / -0.466 
 40 1  -0.678 / 0.074 0.270 / -0.619  0.881 / -0.272 0.763 / -1.363  -0.630 / 0.068 -0.420 / -0.485 
 40 2  -0.178 / 0.113 -0.362 / -0.928  -0.307 / 0.046 0.623 / -0.269  0.112 / -0.743 -0.346 / -0.658 
            
 60 ½  -0.322 / 0.636 0.105 / -1.007  0.011 / 0.386 1.288 / -0.244  0.342 / -0.416 -0.139 / 0.539 
 60 1  -0.572 / 0.408 -0.095 / 0.400  0.998 / -1.244 0.697 / -0.367  0.487 / -1.320 -0.543 / -0.138 
 60 2  -0.498 / 0.257 -0.039 / -0.018  0.079 / -0.870 0.928 / 0.043  -0.498 / -0.183 0.214 / -0.494 
            
 100 ½  -0.285 / 0.232 0.545 / -0.808  0.791 / -0.220 1.617 / -0.111  0.062 / 0.006 -0.106 / -0.121 
 100 1  0.367 / -0.575 -0.655 / 0.023  -0.136 / 0.104 0.820 / -0.509  -0.800 / 0.463 -0.408 / -0.276 
 100 2  -0.868 / 0.181 0.467 / -0.990  0.240 / -0.582 0.875 / -0.207  -0.248 / 0.152 0.157 / -0.214 
            
 200 ½  0.250 / -0.079 -0.057 / -0.459  1.169 / -0.691 0.950 / 0.020  -0.153 / 0.069 0.175 / 0.116 
 200 1  -0.154 / 0.563 -0.582 / 0.350  0.009 / -0.067 1.335 / 0.061  0.225 / -0.669 0.177 / 0.016 
 200 2  -1.197 / 0.462 0.084 / -0.733  0.186 / -0.200 0.988 / 0.061  -0.259 / 0.060 0.316 / -0.078 
            

b=1½ 40 ½  -0.268 / 0.405 0.196 / 0.323  0.520 / -0.173 0.012 / -0.290  0.208 / 0.184 0.028 / 0.130 
 40 1  -0.302 / 0.386 -0.067 / -0.283  -0.029 / -0.132 -0.196 / 0.280  0.228 / -0.492 0.039 / 0.412 
 40 2  0.064 / 0.984 0.413 / 0.347  0.057 / -0.451 0.211 / 0.087  -0.062 / -0.176 -0.410 / -0.145 
            
 60 ½  -0.286 / -0.099 -0.135 / 0.332  0.039 / 0.848 0.126 / -0.391  -0.594 / 0.287 -0.143 / 0.127 
 60 1  0.272 / -0.558 0.365 / 0.005  0.052 / -0.220 0.066 / 0.109  0.357 / -0.659 0.012 / -0.223 
 60 2  -0.180 / -0.037 0.149 / 0.077  0.333 / -0.358 -0.021 / 0.044  0.325 / -0.330 0.209 / -0.118 
            
 100 ½  0.001 / 0.375 0.073 / 0.374  -0.102 / 0.007 -0.098 / -0.223  0.082 / 0.145 -0.580 / 0.412 
 100 1  -0.195 / -0.027 0.213 / 0.135  -0.148 / 0.137 0.093 / -0.287  0.167 / -0.324 0.341 / 0.049 
 100 2  0.429 / -0.302 0.599 / 0.164  0.174 / 0.017 0.027 / -0.115  0.177 / -0.105 0.310 / -0.254 
            
 200 ½  0.133 / -0.239 0.123 / -0.011  0.002 / 0.184 -0.235 / 0.035  0.261 / -0.105 -0.084 / 0.321 
 200 1  0.410 / -0.371 -0.032 / -0.384  -0.307 / 0.302 -0.082 / -0.141  0.159 / -0.152 -0.131 / -0.245 
 200 2  -0.006 / -0.350 -0.307 / 0.155  0.073 / -0.143 0.424 / 0.011  0.069 / 0.034 0.069 / -0.168 
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Table 8.29: BN, Median Bias in Sensitivity and Specificity for Empirical (θ3, θ4), listed as Se / Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  0.270 / -0.460 -0.008 / 0.221  0.087 / 0.095 0.160 / 0.001  0.074 / 0.048 0.164 / -0.149 
 40 1  0.092/ -0.140 0.249 / -0.014  0.080 / 0.161 0.082-0.268  0.095 / -0.075 0.064 / 0.059 
 40 2  -0.029 / 0.233 0.238 / -0.202  -0.029 / 0.134 0.158 / 0.155  0.034 / 0.048 0.015 / 0.082 
            
 60 ½  -0.008 / 0.160 0.199 / 0.011  -0.070 / 0.036 0.082 / -0.043  0.145 / 0.050 0.014 / 0.059 
 60 1  0.042 / 0.110 -0.051 / 0.136  -0.004 / -0.089 0.132 / 0.065  0.012 / 0.025 0.097 / -0.041 
 60 2  0.092 / -0.040 -0.001 / 0.036  0.055 / -0.139 0.007 / 0.132  0.070 / 0.075 -0.036 / 0.159 
            
 100 ½  0.018 / 0.082 -0.092 / 0.177  0.024 / 0.125 0.026 / 0.080  0.027 / 0.049 -0.013 / -0.008 
 100 1  0.002 / 0.050 0.129 / -0.024  0.070 / 0.171 0.092 / -0.088  -0.035 / 0.085 0.064 / -0.061 
 100 2  0.028 / 0.128 -0.009 / 0.124  0.081 / -0.001 -0.037 / 0.050  0.056 / -0.057 0.029 / 0.129 
            
 200 ½  0.073 / 0.054 0.066 / -0.025  -0.024 / 0.083 0.053 / 0.074  0.011 / -0.025 0.074 / 0.054 
 200 1  -0.058 / 0.140 0.049 / 0.056  0.040 / 0.001 -0.018 / 0.092  -0.015 / 0.035 0.044 / -0.011 
 200 2  0.065 / 0.113 0.178 / 0.033  0.058 / -0.001 0.030 / 0.126  0.048 / 0.034 -0.001 / 0.008 
            

b=1½ 40 ½  0.040 / 0.084 0.037 / 0.260  -0.080 / -0.008 0.070 / 0.080  0.010 / 0.084 0.027 / 0.091 
 40 1  -0.067 / 0.103 0.030 / -0.036  0.034 / -0.027 -0.009 / 0.172  0.032 / 0.022 -0.002 / 0.118 
 40 2  -0.224 / 0.046 -0.079 / 0.337  0.060 / -0.008 -0.118 / 0.195  0.045 / -0.032 0.061 / 0.091 
            
 60 ½  0.083 / -0.047 -0.020 / 0.064  -0.066 / 0.173 0.041 / -0.103  -0.018 / 0.022 0.048 / -0.057 
 60 1  0.016 / -0.013 0.047 / 0.180  -0.032 / -0.010 -0.092 / 0.006  0.049 / 0.122 0.032 / 0.068 
 60 2  0.083 / 0.103 0.105 / 0.114  0.059 / -0.027 0.041 / 0.022  0.007 / 0.072 -0.002 / 0.018 
            
 100 ½  -0.082 / 0.126 -0.085 / 0.187  -0.013 / 0.079 0.023 / -0.152  -0.036 / 0.077 0.038 / 0.001 
 100 1  0.083 / -0.067 -0.040 / 0.134  0.034 / -0.037 0.021 / -0.068  0.002 / 0.022 -0.002 / 0.108 
 100 2  -0.026 / 0.111 -0.193 / 0.141  -0.090 / 0.102 0.022 / 0.121  -0.023 / 0.092 -0.036 / 0.108 
            
 200 ½  0.034 / -0.022 0.031 / 0.060  -0.045 / 0.013 -0.023 / 0.039  0.007 / 0.009 -0.021 / 0.048 
 200 1  0.003 / 0.053 0.070 / 0.044  0.004 / 0.013 0.021 / 0.002  0.022 / 0.042 0.048 / -0.092 
 200 2  0.034 / -0.010 0.038 / 0.050  0.022 / -0.004 -0.023 / 0.045  -0.037 / 0.046 0.009 / 0.001 
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Table 8.30: BN, Percent of Overestimation of Empirical Sensitivity and Specificity, listed as % Se / % Sp 

    AUC = (0.7, 0.7)  AUC = (0.75, 0.85)  AUC = (0.9, 0.9) 
 N k  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5)  ρ = (0.0, 0.0) ρ = (0.5, 0.5) 

b=1 40 ½  85.1 / 4.7 23.6 / 99.7  96.5 / 96.2 98.8 / 53.5  99.3 / 94.7 99.4 / 0.5 
 40 1  59.3 / 37.1 88.7 / 41.6  99.2 / 99.8 58.6 / 16.9  98.4 / 13.0 99.6 / 94.8 
 40 2  34.1 / 99.4 99.7 / 0.0  41.9 / 98.2 99.8 / 99.7  61.8 / 53.0 57.8 / 88.9 
            
 60 ½  10.1 / 92.6 100.0 / 53.9  8.4 / 68.9 87.5 / 12.3  96.1 / 92.8 56.2 / 74.3 
 60 1  57.7 / 92.2 11.3 / 98.1  10.6 / 19.2 91.8 / 93.7  74.5 / 52.5 74.2 / 7.5 
 60 2  86.7 / 26.2 44.8 / 73.1  76.6 / 5.7 87.7 / 96.8  98.1 / 96.1 17.6 / 99.8 
            
 100 ½  63.1 / 84.6 7.1 / 98.0  62.4 / 99.6 56.2 / 99.7  73.4 / 95.9 16.7 / 35.2 
 100 1  61.8 / 83.3 65.5 / 43.5  93.8 / 99.9 76.7 / 16.3  29.9 / 95.7 97.1 / 3.9 
 100 2  69.4 / 97.4 45.0 / 91.0  82.8 / 48.9 28.7 / 72.7  80.3 / 32.9 64.9 / 97.6 
            
 200 ½  98.5 / 89.7 79.6 / 41.2  9.0 / 98.0 99.3 / 99.7  63.5 / 21.7 100.0 / 99.6 
 200 1  15.0 / 98.9 78.5 / 94.3  96.8 / 66.2 31.4 / 100.0  13.0 / 98.1 89.7 / 43.4 
 200 2  94.6 / 97.5 100.0 / 96.2  93.4 / 47.9 87.2 / 100.0  93.2 / 92.3 40.8 / 70.3 
            

b=1½ 40 ½  53.9 / 91.1 85.4 / 100.0  7.8 / 46.3 58.9 / 96.6  99.2 / 96.7 88.6 / 98.7 
 40 1  22.1 / 76.4 57.7 / 39.7  53.5 / 43.9 15.6 / 98.3  66.6 / 57.6 16.8 / 99.1 
 40 2  21.6 / 66.3 1.7 / 99.9  81.4 / 3.8 19.4 / 97.8  56.2 / 37.8 62.8 / 99.9 
            
 60 ½  95.1 / 12.4 25.4 / 82.4  39.0 / 94.8 58.9 / 17.8  41.9 / 59.2 77.9 / 2.0 
 60 1  65.6 / 49.6 78.7 / 99.7  34.3 / 49.9 16.4 / 57.8  99.1 / 99.7 65.3 / 90.8 
 60 2  62.2 / 90.1 95.1 / 99.0  85.5 / 37.2 67.3 / 75.1  65.1 / 90.4 19.2 / 90.3 
            
 100 ½  24.3 / 85.0 5.0 / 99.9  36.9 / 95.9 62.2 / 0.4  0.3 / 99.4 70.4 / 61.4 
 100 1  84.6 / 16.5 29.4 / 88.6  70.8 / 35.7 78.2 / 17.5  64.9 / 79.3 34.2 / 99.8 
 100 2  35.6 / 97.2 23.2 / 71.0  14.2 / 88.6 62.1 / 99.0  20.4 / 99.2 16.7 / 97.4 
            
 200 ½  58.4 / 38.7 81.8 / 96.4  35.2 / 55.5 33.7 / 68.2  77.1 / 63.5 26.1 / 89.7 
 200 1  50.9 / 87.1 99.2 / 97.3  58.9 / 72.6 81.2 / 59.9  89.0 / 90.8 97.8 / 0.0 
 200 2  56.9 / 48.9 89.3 / 100.0  73.0 / 32.3 28.2 / 85.8  5.3 / 93.0 70.4 / 80.5 
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Table 8.31: BP, Assessing Normality 

Parameter 
Set # Test TSS k 

# Valid 
Estimated 

OOPs Mean Median Skewness Kurtosis 

Kolmogrov-
Smirnov 
p-value 

Shapiro-
Wilk 

p-value 

Histogram 
Look 

Normal? 

QQPlot 
Look 

Normal? 
Decision on 
Normality 

3 1 40 0.5 984 1.547 1.532 0.631 1.114 <0.0100 <0.0001 y y Y 
2 1.551 1.518 0.583 0.801 <0.0100 <0.0001 y y Y 

15 1 40 0.5 989 1.515 1.484 0.513 0.794 <0.0100 <0.0001 y y Y 
2 1.527 1.497 1.191 4.674 <0.0100 <0.0001 y y Y 

17 1 60 2 1000 1.497 1.477 0.516 0.918 <0.0100 <0.0001 y y Y 
2 1.499 1.466 0.935 3.725 <0.0100 <0.0001 y y Y 

27 1 40 0.5 995 1.862 1.830 0.873 1.915 <0.0100 <0.0001 y y Y 
2 1.598 1.585 0.350 0.559 0.0692 <0.0001 y y Y 

48 1 200 0.5 1000 1.845 1.831 0.620 1.422 <0.0100 <0.0001 y y Y 
2 1.470 1.470 0.146 0.395 >0.1500 0.0151 y y Y 

57 1 100 0.5 1000 1.962 1.957 0.141 -0.113 >0.1500 0.1155 y y Y 
2 1.958 1.954 0.244 -0.069 >0.1500 0.001 y y Y 

59 1 200 2 1000 1.952 1.949 -0.024 0.294 >0.1500 0.3184 y y Y 
2 1.939 1.940 0.018 0.235 >0.1500 0.3783 y y Y 

67 1 100 1 1000 1.823 1.807 0.374 0.480 <0.0100 <0.0001 y y Y 
2 1.816 1.813 0.130 -0.012 >0.1500 0.1232 y y Y 

69 1 100 0.5 1000 1.822 1.812 0.570 1.714 <0.0100 <0.0001 y y Y 
2 1.824 1.805 0.509 0.710 <0.0100 <0.0001 y y Y 

78 1 60 0.5 727 0.989 0.926 0.702 0.530 <0.0100 <0.0001 y y Y 
2 0.923 0.870 0.680 0.245 <0.0100 <0.0001 y y Y 

80 1 100 2 834 0.949 0.881 0.625 0.278 <0.0100 <0.0001 y y Y 
2 0.923 0.860 0.824 0.767 <0.0100 <0.0001 y y Y 

113 1 60 2 575 1.578 1.464 0.307 -1.051 <0.0100 <0.0001 n n N 
2 0.868 0.827 1.633 6.971 <0.0100 <0.0001 y n N 

124 1 60 1 981 1.479 1.414 1.067 1.941 <0.0100 <0.0001 y y Y 
2 1.492 1.444 1.076 2.603 <0.0100 <0.0001 y y Y 

129 1 100 0.5 995 1.477 1.457 0.773 2.084 <0.0100 <0.0001 y y Y 
2 1.467 1.424 1.108 2.293 <0.0100 <0.0001 y y Y 
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Table 8.32: BN, Assessing Normality 

Parameter 
Set # Test TSS k 

# Valid 
Estimated 

OOPs Mean Median Skewness Kurtosis 

Kolmogrov-
Smirnov 
p-value 

Shapiro-
Wilk 

p-value 

Histogram 
Look 

Normal? 

QQPlot 
Look 

Normal? 
Decision on 
Normality 

21 1 100 0.5 998 -0.209 -0.195 -0.620 0.633 <0.0100 <0.0001 y y Y 
2 -0.188 -0.165 -0.955 2.350 <0.0100 <0.0001 y n Y 

24 1 200 0.5 1000 -0.203 -0.198 -0.494 0.729 0.0163 <0.0001 y y Y 
2 -0.193 -0.188 -0.359 0.298 0.0236 <0.0001 y y Y 

29 1 60 2 980 -0.318 -0.295 -0.698 1.115 <0.0100 <0.0001 y n Y 
2 0.335 0.341 -0.355 0.706 >0.1500 <0.0001 y y Y 

36 1 200 0.5 1000 -0.294 -0.280 -0.384 0.462 <0.0100 <0.0001 y y Y 
2 0.351 0.350 -0.168 0.088 >0.1500 0.1712 y y Y 

40 1 60 1 982 -0.365 -0.319 -0.929 1.510 <0.0100 <0.0001 n n N 
2 0.443 0.449 -0.338 0.619 0.0248 <0.0001 y y Y 

82 1 200 1 944 -0.193 -0.157 -0.900 1.666 <0.0100 <0.0001 y n Y 
2 -0.174 -0.130 -0.819 1.177 <0.0100 <0.0001 y y Y 

85 1 40 1 618 -0.112 -0.014 -0.933 1.028 <0.0100 <0.0001 n n N 
2 -0.171 -0.069 -0.852 0.768 <0.0100 <0.0001 y y Y 

86 1 40 2 577 -0.214 -0.096 -0.818 0.514 <0.0100 <0.0001 y y Y 
2 -0.129 -0.039 -0.846 1.003 <0.0100 <0.0001 y y Y 

90 1 60 0.5 664 -0.096 -0.031 -0.957 1.357 <0.0100 <0.0001 y y Y 
2 -0.134 -0.060 -0.847 0.715 <0.0100 <0.0001 y n Y 

96 1 200 0.5 844 -0.116 -0.012 -1.324 2.055 <0.0100 <0.0001 n n N 
2 -0.084 -0.003 -1.194 1.949 <0.0100 <0.0001 n n N 

97 1 40 1 747 -0.446 -0.376 -0.407 -0.219 <0.0100 <0.0001 y y Y 
2 0.410 0.481 -1.415 3.773 <0.0100 <0.0001 n n N 

105 1 100 0.5 838 -0.567 -0.531 -0.347 -0.201 <0.0100 <0.0001 y y Y 
2 0.501 0.525 -0.924 1.626 <0.0100 <0.0001 y n Y 

115 1 100 1 590 -0.855 -0.843 0.082 -1.045 <0.0100 <0.0001 n n N 
2 0.660 0.674 -3.644 33.241 <0.0100 <0.0001 n n N 

139 1 100 1 970 0.439 0.518 -1.880 5.460 <0.0100 <0.0001 n n N 
2 0.433 0.514 -1.761 4.985 <0.0100 <0.0001 n n N 
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Table 8.33: BP, Varying r (TSS = 200, k = 1, ρ = (0.0, 0.0)) 

 AUC = (0.7, 0.7) AUC = (0.75, 0.85) AUC = (0.9, 0.9) 
 b = 0.5 b = 1 b = 0.5 b = 1 b = 0.5 b = 1 
r = 0.5       
   Number of Times Invalid OOP Estimates, 
     θ1 / θ2 / θ1 & θ2 

0 / 0 / 0 11 / 9 / 0 0 / 0 / 0 29 / 0 / 0 0 / 0 / 0 0 / 0 / 0 

   Bias of θ1 / θ2 -0.008 / -0.007 0.016 / 0.027 -0.010 / 0.010 -0.014 / 0.017 0.007 / -0.006 0.001 / 0.013 
   RMSE of θ1 / θ2 0.190 / 0.192 0.519 / 0.519 0.204 / 0.156 0.441 / 0.201 0.180 / 0.177 0.220 / 0.229 
   Bias of Se / Sp corresponding to (θ1, θ2) 0.004 / -0.001 0.005 / 0.010 0.003 / 0.003 0.003 / 0.006 0.002 / 0.000 0.001 / 0.004 
   RMSE of Se / Sp corresponding to (θ1, θ2) 0.032 / 0.041 0.020 / 0.084 0.025 / 0.029 0.015 / 0.056 0.017 / 0.018 0.012 / 0.038 
   Percent Overestimation of Se and Sp,  
     % Se / % Sp 

56.10 / 49.00 63.37 / 53.47 56.10 / 53.40 60.25 / 56.33 56.00 / 50.70 54.50 / 54.90 

   Coverage for SCIs / CRs for (θ1, θ2) 96.20 / 96.20 93.88 / 94.08 94.80 / 95.70 91.35 / 91.66 94.90 / 94.90 95.90 / 94.50 
   Median SCI Widths for θ1 / θ2 0.69 / 0.69 1.81 / 1.82 0.73 / 0.57 1.55 / 0.69 0.65 / 0.65 0.79 / 0.79 
   Median CR Area for (θ1, θ2) 0.41 1.82 0.36 0.69 0.38 0.41 
       
r = 2.0       
   Number of Times Invalid OOP Estimates, 
     θ1 / θ2 / θ1 & θ2 

0 / 0 / 0 101 / 102 / 0 0 / 0 / 0 156 / 0 / 0 0 / 0 / 0 0 / 0 / 0 

   Bias of θ1 / θ2 -0.005 / -0.013 0.010 / -0.025 0.011 / 0.006 -0.077 / 0.015 -0.007 / -0.003 0.002 / -0.012 
   RMSE of θ1 / θ2 0.210 / 0.212 0.336 / 0.335 0.231 / 0.181 0.371 / 0.173 0.203 / 0.203 0.234 / 0.242 
   Bias of Se / Sp corresponding to (θ1, θ2) 0.004 / 0.001 0.023 / 0.002 0.001 / 0.000 0.010 / 0.001 0.002 / 0.001 0.006 / 0.002 
   RMSE of Se / Sp corresponding to (θ1, θ2) 0.052 / 0.006 0.082 / 0.020 0.041 / 0.006 0.055 / 0.018 0.029 / 0.005 0.037 / 0.015 
   Percent Overestimation of Se and Sp,  
     % Se / % Sp 

53.50 / 57.10 63.36 / 56.59 51.70 / 52.10 56.99 / 52.25 53.60 / 56.00 58.50 / 56.50 

   Coverage for SCIs / CRs for (θ1, θ2) 93.90 / 93.40 91.22 / 89.96 93.10 / 92.70 92.06 / 90.52 95.00 / 94.90 93.20 / 92.50 
   Median SCI Widths for θ1 / θ2 0.77 / 0.76 1.22 / 1.20 0.83 / 0.66 1.27 / 0.65 0.74 / 0.74 0.84 / 0.83 
   Median CR Area for (θ1, θ2) 0.52 1.12 0.48 0.59 0.48 0.47 
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Table 8.34: BN, Varying r (TSS = 200, k = 1, ρ = (0.0, 0.0)) 

 AUC = (0.7, 0.7) AUC = (0.75, 0.85) AUC = (0.9, 0.9) 
 b = 1 b = 1.5 b = 1 b = 1.5 b = 1 b = 1.5 
r = 0.5       
   Number of Times Invalid OOP Estimates, 
     θ3 / θ4 / θ3 & θ4 

100 / 118 / 3 0 / 0 / 0 151 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 

   Bias of θ3 / θ4 0.007 / 0.009 0.005 / 0.001 0.080 / -0.029 -0.002 / 0.008 0.014 / 0.000 -0.000 / 0.002 
   RMSE of θ3 / θ4 0.329 / 0.335 0.161 / 0.159 0.366 / 0.175 0.177 / 0.118 0.239 / 0.236 0.134 / 0.135 
   Bias of Se / Sp corresponding to (θ3, θ4) 0.002 / 0.020 0.001 / 0.004 0.002 / 0.007 0.002 / 0.003 0.002 / 0.004 0.001 / 0.002 
   RMSE of Se / Sp corresponding to (θ3, θ4) 0.020 / 0.082 0.009 / 0.060 0.017 / 0.054 0.010 / 0.048 0.015 / 0.037 0.008 / 0.033 
   Percent Overestimation of Se and Sp,  
     % Se / % Sp 

55.80 / 61.53 55.70 / 53.10 56.42 / 56.89 56.90 / 53.70 54.80 / 55.20 52.10 / 52.80 

   Coverage for SCIs / CRs for (θ3, θ4) 89.55 / 89.43 95.30 / 95.10 92.23 / 91.40 93.00 / 92.90 94.10 / 93.50 93.30 / 92.90 
   Median SCI Widths for θ3 / θ4 1.21 / 1.22 0.58 / 0.58 1.26 / 0.66 0.63 / 0.43 0.84 / 0.84 0.49 / 0.48 
   Median CR Area for (θ3, θ4) 1.12 0.29 0.60 0.23 0.47 0.19 
       
r = 2.0       
   Number of Times Invalid OOP estimates,  
     θ3 / θ4 / θ3 & θ4 

23 / 15 / 1 0 / 0 / 0 37 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 

   Bias of θ3 / θ4 -0.028 / -0.017 -0.010 / 0.003 0.022 / -0.024 0.002 / -0.000 -0.006 / -0.000 -0.005 / 0.007 
   RMSE of θ3 / θ4 0.523 / 0.503 0.178 / 0.177 0.439 / 0.204 0.166 / 0.111 0.227 / 0.224 0.122 / 0.123 
   Bias of Se / Sp corresponding to (θ3, θ4) 0.011 / 0.003 0.005 / 0.008 0.005 / 0.004 0.001 / 0.001 0.005 / 0.003 0.002 / 0.003 
   RMSE of Se / Sp corresponding to (θ3, θ4) 0.084 / 0.020 0.070 / 0.029 0.056 / 0.016 0.042 / 0.023 0.039 / 0.012 0.027 / 0.016 
   Percent Overestimation of Se and Sp,  
     % Se / % Sp 

56.39 / 59.61 53.00 / 61.60 54.41 / 60.96 56.90 / 53.80 56.20 / 59.20 54.00 / 58.50 

   Coverage for SCIs / CRs for (θ3, θ4) 93.46 / 93.98 96.90 / 96.50 93.56 / 94.39 94.80 / 94.90 95.50 / 94.80 95.30 / 94.30 
   Median SCI Widths for θ3 / θ4 1.83 / 1.80 0.62 / 0.61 1.56 / 0.69 0.63 / 0.40 0.80 / 0.78 0.44 / 0.44 
   Median CR Area for (θ3, θ4) 1.85 0.30 0.69 0.19 0.41 0.16 
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8.3. Appendix C: SCI Widths and Total Sample Size Prediction Equations 

OLS models to predict SCI widths are shown below. Because M1 is the best performing 

model for both sequential testing strategies, it will be shown in (a) – (d). Additionally, 

since M2 is the model most researchers will likely have the information for, and the 

inclusion of interactions increase the accuracy of the model, M2 + AUC*b will also be 

included below in (e) – (h) (the addition of TSS*k did not add anything to R2, so this 

model’s equation will not be included). M3 will be omitted since this is the least practical 

model. 

SCI Widths: 

BP, M1: 

(a) SCI Width θ1 = 1 2 1 2

1 1 2 2

0.83251– 0.00527 – 0.71403 1.17412*

0.43870* 0.40471* 0.38568* 0.31489*

2.01130* 0.03104* 0.16414* 0.45470*

0.05500*

H D

H H D D

H D H D

*TSS *

k

 
   
   

 
   
   

 

(b) SCI Width θ2 = 1 2 1 2

1 1 2 2

0.64666 – 0.00504 – 0.64798 0.87311*

0.43776* 0.51615* 0.40555* 0.45528*

0.10578* 0.41209* 1.76455* 0.14255*

0.04761*

H D

H H D D

H D H D

*TSS *

k

 
   
   

 
   
   

 

BN, M1: 

(c) SCI Width θ1 = 1 2 1 2

1 1 2 2

0.07104 – 0.00435 1.19158 0.70836*

0.56884* 0.47832* 0.64600* 0.49428*

0.34499* 2.39569* 0.58781* 0.15716*

0.00154*

H D

H H D D

H D H D

*TSS *

k
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(d) SCI Width θ2= 1 2 1 2

1 1 2 2

0.15169 – 0.00424 0.90838 0.66492*

0.58312* 0.68249* 0.76058* 0.89918*

0.64907* 0.04272* 0.54057* 2.09272*

0.00291*

H D

H H D D

H D H D

*TSS *

k

 
   
   

  
   
   

 

BP, M2 + AUC*b: 

(e) SCI Width θ1 =
1 2

1 2

1 1 2 2

0.10571– 0.00516 0.83143* 2.10710*

0.67019* 1.17282* 3.80276* 0.64531*

0.04898* 3.63939* * 0.99793* *
H D

*TSS AUC AUC

b b

k AUC b AUC b

 
   

   
 

 

(f) SCI Width θ2 =
1 2

1 2

1 1 2 2

0.45704 – 0.00490 1.25848* 0.36435*

0.58838* 0.82264* 2.40759* 5.05018*

0.04235* 3.19752* * 5.41204* *
H D

*TSS AUC AUC

b b

k AUC b AUC b

 
  

   
 

 

BN, M2 + AUC*b: 

(g) SCI Width θ1 =
1 2

1 2

1 1 2 2

5.55144 – 0.00450 5.70396* 2.90849*

1.28358* 0.76890* 2.34340* 0.16024*

0.00831* 1.80882* * 0.33338* *
H D

*TSS- AUC AUC

b b

k AUC b AUC b

 
 

   
 

 

(h) SCI Width θ2 =
1 2

1 2

1 1 2 2

5.11474 – 0.00430 5.46691* 7.97909*

0.97419* 0.71025* 0.87370* 2.97751*

0.00629* 1.54576* * 2.75218* *
H D

*TSS AUC AUC

b b

k AUC b AUC b

 
  

   
 

 

 

OLS models to predict TSS are shown below. Again, M1 will be shown (i) – (l) and  

M2 + AUC*b will also be included below in (m) – (q). M3 will again be omitted since 

this is the least practical model. 
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OLS TSS: 

BP, M1: 

(i) TSS =

1

1 2 1 2

1 1 2 2

101.19614 – 78.00019 – 62.68480 99.82246*

37.12254* 31.94721* 31.11355* 24.30843*

172.84236* 3.39221* 0.58137* 35.93269*

4.32768*

H D

H H D D

H D H D

*SCIWidth *

k

  
   
   

 
   
   

 

(j) TSS =

2

1 2 1 2

1 1 2 2

87.54881– 77.24835 – 57.30298 75.99069*

30.80523* 39.47751* 30.25934* 35.43230*

8.37728* 32.83994* 148.98030* 10.52834*

3.71734*

H D

H H D D

H D H D

*SCIWidth *

k

  
   

   

 
   
   

 

BN, M1: 

(k) TSS =

1

1 2 1 2

1 1 2 2

41.10121– 92.85079 118.77820 71.93783*

58.80122* 44.98378* 62.94795* 45.98943*

32.11888* 235.65039* 50.99490* 16.58264*

0.34079*

H D

H H D D

H D H D

*SCIWidth *

k

  
   
   

  
   
   

 

(l) TSS=

2

1 2 1 2

1 1 2 2

62.65313 – 92.55910 92.37382 67.82936*

47.87442* 62.58796* 67.37496* 83.13018*

59.98950* 17.41633* 53.68744* 195.72953*

0.47022*

H D

H H D D

H D H D

*SCIWidth *

k

  
   
   

  
   
   

 

BP, M2 + AUC*b: 

(m) TSS =

1 1

2

1 2

1 1 2 2

21.85069 72.01482 36.55223*

175.17757* 54.19900* 92.36197*

317.14622* 24.33313* 3.33640*

310.95943* * 44.97021* *

H D

*SCIWidth AUC

AUC

b b k

AUC b AUC b


 

  
  

  


 

(n) TSS =

2 1

2

1 2

1 1 2 2

58.00913 77.11872 120.15292*

4.88689* 51.25369* 71.26731*

142.79182* 411.39110* 3.07690*

198.18581* * 444.00865* *

H D

*SCIWidth AUC

AUC

b b k

AUC b AUC b
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BN, M2 + AUC*b: 

(o) TSS =

1 1

2

1 2

1 1 2 2

595.72050 – 76.98047 531.21323*

206.78486* 110.02441* 67.68694*

230.34756* 32.90193* 0.42526*

192.55419* * 5.18954* *

H D

*SCIWidth AUC

AUC

b b k

AUC b AUC b


 
 

  
  



 

(p) TSS =

2 1

2

1 2

1 1 2 2

579.17550 – 80.28883 346.72896*

657.75943* 89.44080* 65.52959*

20.15155* 259.64551* 0.29103*

70.74960* * 241.46128* *

H D

*SCIWidth AUC

AUC

b b k

AUC b AUC b


 

 
  

  


 

 

8.4. Appendix D: SAS Programs 

Below are SAS programs associated with the simulation study and related sub-analyses 

described in chapter 4. 

 

8.4.1 Determining Legitimate BP and BN Strategies 

libname pop 'C:\Documents and Settings\wilkar\My Documents\Dropbox\Dissertation!'; 
 
data values; 
 set pop.pop_parms; 
run; 
 
%let pi=4*atan(1); 
%let m1h=0; %let s1h=1; %let m2h=0; %let s2h=1; 
%let iter=1000; %let converge=0.001; %let func=1000; 
 
data parms; set values; id=_n_; 
 
/*  Assuming that the healthy group follows a Standard Normal Distribution */ 
 m1h=&m1h; s1h=&s1h; m2h=&m2h; s2h=&s2h; cpratio=r; 
 
 s1d=s1h/b1; s2d=s2h/b2; 
 
/* b1 = s1h / s1d; b2 = s2h / s2d;*/ 
  
 m1d = ( s1d * Sqrt(1 + (b1)**2) * probit(AUC1) ) + m1h; 
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 m2d = ( s2d * Sqrt(1 + (b2)**2) * probit(AUC2) ) + m2h; 
 
 a1 = (m1d - m1h) / s1d; a2 = (m2d - m2h) / s2d; 
 
 lcutoff1 = m1h - 1.645*s1h; hcutoff1 = m1d + 1.645*s1d;   
 lcutoff2 = m2h - 1.645*s2h; hcutoff2 = m2d + 1.645*s2d; 
run; 
 
/* BN */ 
proc nlp data=parms noprint out=oop_bn absgconv=&converge maxiter=&iter   
  maxfunc=&func; 
 by id; 
 max GYI; 
 parms theta3 = -4 to 4 by 0.2, theta4 = -4 to 4 by 0.2; 
 TPR = 1-probnorm((theta3-m1d)/s1d)-probnorm((theta4-m2d)/s2d) + probbnrm(  
  ((theta3-m1d)/s1d), ((theta4-m2d)/s2d), pd); 
 FPR = 1-probnorm((theta3-m1h)/s1h)-probnorm((theta4-m2h)/s2h) + probbnrm(  
  ((theta3-m1h)/s1h), ((theta4-m2h)/s2h), ph); 
 Sens = TPR; 
 Spec = 1 - FPR; 
 
 GYI = TPR - cpratio*FPR; 
run; 
 
data oop_bn2; 
 merge parms oop_bn (drop=_obs_ _type_); 
 by id; 
run; 
 
data oop_bn3; 
 set oop_bn2; 
 if theta3=. or theta3 > hcutoff1 or theta3 < lcutoff1 then flag1=1; else flag1=0; 
 if theta4=. or theta4 > hcutoff2 or theta4 < lcutoff2 then flag2=1; else flag2=0; 
 if flag1=1 and flag2=1 then flag12=1; else flag12=0; 
 
 if AUC1=0.7 and AUC2=0.7 then AUCpair=1; 
 else  if AUC1=0.75 and AUC2=0.85 then AUCpair=2; 
 else if AUC1=0.9 and AUC2=0.9 then AUCpair=3; 
run; 
 
data bad_bn; set oop_bn3; if flag1=1 or flag2=1 or flag12=1; run; 
 
proc sort data=oop_bn3; by AUCpair cpratio; run; 
proc print data=oop_bn3; 
 var b1 b2 ph pd cpratio sens spec GYI; 
 by AUCpair; 
 where flag1=0 and flag2=0; 
run; 
proc sort data=bad_bn; by AUCpair cpratio; run; 
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proc print data=bad_bn; 
 var b1 b2 ph pd cpratio sens spec GYI; 
 by AUCpair; 
run; 
 
/* BP */ 
proc nlp data=parms noprint out=oop_bp absgconv=&converge maxiter=&iter   
  maxfunc=&func; 
 by id; 
 max GYI; 
 parms theta1 = -4 to 4 by 0.2, theta2 = -4 to 4 by 0.2; 
 TPR = 1-probbnrm( ((theta1-m1d)/s1d), ((theta2-m2d)/s2d), pd); 
 FPR = 1-probbnrm( ((theta1-m1h)/s1h), ((theta2-m2h)/s2h), ph); 
 Sens = TPR; 
 Spec = 1 - FPR; 
 GYI = TPR - cpratio*FPR; 
run; 
 
data oop_bp2; 
 merge parms oop_bp (drop=_obs_ _type_); 
 by id; 
run; 
 
data oop_bp3; 
 set oop_bp2; 
 if theta1=. or theta1 > hcutoff1 or theta1 < lcutoff1 then flag1=1; else flag1=0; 
 if theta2=. or theta2 > hcutoff2 or theta2 < lcutoff2 then flag2=1; else flag2=0; 
 if flag1=1 and flag2=1 then flag12=1; else flag12=0; 
 
 if AUC1=0.7 and AUC2=0.7 then AUCpair=1; 
 else  if AUC1=0.75 and AUC2=0.85 then AUCpair=2; 
 else if AUC1=0.9 and AUC2=0.9 then AUCpair=3; 
run; 
 
data bad_bp; 
 set oop_bp3; 
 if flag1=1 or flag2=1 or flag12=1; 
run; 
proc sort data=oop_bp3; by AUCpair cpratio; run; 
proc print data=oop_bp3; 
 var b1 b2 ph pd cpratio sens spec GYI; 
 by AUCpair; 
 where flag1=0 and flag2=0; 
run; 
proc sort data=bad_bp; by AUCpair cpratio; run; 
proc print data=bad_bp; 
 var b1 b2 ph pd cpratio sens spec GYI; 
 by AUCpair; 
run; 
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8.4.2 BP Simulations and Empirical Estimates 

options ps=65 ls=116 obs=max formdlim=# nodate nonumber;  
libname BP 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BP'; 
 
/* Defines what parameter set these datasets belong to */ 
%let i=1; 
 
data sasparms;  
 set BP.sasparms; if _n_=&i;  
 call symput('TSS',TSS); call symput('k',k); call symput('AUC1',AUC1);
 call symput('AUC2',AUC2); call symput('ph',ph); call symput('pd',pd);  
 call symput('s1d',s1d); call symput('s2d',s2d); 
run; 
 
%let pi=4*atan(1); 
%let times=1000; %let rep=1000; %let p=2; %let z=1.645;  
%let bratio1=s1h/s1d; %let bratio2=s2h/s2d; 
%let R=1; 
%let N0=floor(&TSS/(&k+1));  %let N1=&TSS - &N0;  
%let m1h=0; %let s1h=1; %let m2h=0; %let s2h=1; 
%let converge=0.001; %let iter=1000; %let func=1000; %let tech=nrridg; 
 
data parms&i; 
 R=&R; ph=&ph; pd=&pd; AUC1 = &AUC1; AUC2 = &AUC2; 
 
 /* Assuming that the healthy group follows a Standard Normal Distribution */ 
 m1h=&m1h; s1h=&s1h; m2h=&m2h; s2h=&s2h; s1d=&s1d;
 s2d=&s2d; 
 
 b1=s1h/s1d; b2=s2h/s2d; 
 
 m1d = ( s1d * Sqrt(1 + (b1)**2) * probit(AUC1) ) + m1h; 
 m2d = ( s2d * Sqrt(1 + (b2)**2) * probit(AUC2) ) + m2h; 
 
 Ca1=(m1d-m1h)/s1d; Ca2=(m2d-m2h)/s2d; 
 Cauc1 = probnorm( Ca1 / sqrt(1+b1**2) ); 
 Cauc2 = probnorm( Ca2 / sqrt(1+b2**2) ); 
 
 b1 = s1h / s1d; a1 = (m1d - m1h) / s1d; 
 b2 = s2h / s2d; a2 = (m2d - m2h) / s2d; 
run; 
 
proc nlp data=parms&i noprint out=NRTrueValues&i tech=&tech absgconv=&converge  
  maxiter=&iter maxfunc=&func; 
 max trueGYI; 
 parms truetheta1 = -4 to 4 by 0.1, truetheta2 = -4 to 4 by 0.1; 
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 trueTPR = 1-probbnrm( ((truetheta1-m1d)/s1d), ((truetheta2-m2d)/s2d), pd); 
 trueFPR = 1-probbnrm( ((truetheta1-m1h)/s1h), ((truetheta2-m2h)/s2h), ph); 
 trueSens = trueTPR; 
 trueSpec = 1 - trueFPR; 
 trueGYI = trueTPR - &R*trueFPR; 
run; 
 
data sim; 
 set NRTrueValues&i; 
 call symput('t1',truetheta1); 
 call symput('t2',truetheta2); 
run; 
 
data Parms_TrueValues&i; 
 N_d=&N1; N_h=&N0; R=&R; 
 merge Parms&i (keep=AUC1 AUC2 b1 b2 ph pd)  
 NRTrueValues&i (keep=truetheta1 truetheta2 trueGYI trueSens trueSpec); 
run; 
 
/* Simulating Data */ 
%let seed1=%eval(12345+&i); %let seed2=%eval(54321+&i); 
data disease&i (keep=id test1d test2d nrun h_d_flag) healthy&i (keep=id test1h test2h 
nrun h_d_flag); 
 set parms&i; 
 cd=sqrt(1-pd**2); ch=sqrt(1-ph**2); 
  do k=1 to &times; 
   nrun=k; 
   do l=1 to &N1; 
    id=l; 
    h_d_flag=1; 
     test1d = rannor(&seed1); 
     test2d = pd*test1d+cd*rannor(&seed1); 
           test1d = m1d + s1d*test1d; 
           test2d = m2d + s2d*test2d; 
            output disease&i; 
   end; 
   do j=1 to &N0; 
    id=j; 
    h_d_flag=0; 
     test1h = rannor(&seed2); 
           test2h = ph*test1h+ch*rannor(&seed2); 
           test1h = m1h + s1h*test1h; 
           test2h = m2h + s2h*test2h; 
            output healthy&i; 
   end; 
  end; 
run; 
 
data combined&i; merge disease&i healthy&i; by nrun id; run; 



www.manaraa.com

    150

/* Finding the Means, Variances, and Correlations for each simulated dataset 
sampled from the specified set of parameters */ 
proc summary data=combined&i; 
 class nrun; 
 var test1d test2d test1h test2h; 
 output out=simstats&i (where=(nrun>.) drop=_freq_ _type_) mean=m1d m2d 
m1h m2h std=s1d s2d s1h s2h; 
run; 
/*Diseased  correlation for each simulated dataset*/ 
proc corr data=combined&i out=Dcorr&i noprint;    
      var test1d test2d;  
   by nrun; 
run; 
data Dcorr&i; keep _TYPE_ _NAME_ test1d;  
 set Dcorr&i;  
 where _TYPE_='CORR' and _NAME_='test2d'; 
run; 
data Dcorr&i (rename=(test1d=pd)); drop _TYPE_ _NAME_; set Dcorr&i; run; 
/* Non-diseased correlation for each simulated dataset*/ 
proc corr data=combined&i out=Hcorr&i noprint;    
      var test1h test2h;  
   by nrun; 
run; 
data Hcorr&i; keep _TYPE_ _NAME_ test1h;  
 set Hcorr&i;  
 where _TYPE_='CORR' and _NAME_='test2h'; 
run; 
data Hcorr&i (rename=(test1h=ph)); drop _TYPE_ _NAME_; set Hcorr&i; run; 
 
data SimDataMSDC&i; merge simstats&i Dcorr&i Hcorr&i; run; 
 
filename junk dummy; 
proc printto  log=junk; run; 
%macro sim; 
%do m=1 %to &times; 
proc nlp data=SimDataMSDC&i noprint out=AllSimDataNLP&m tech=&tech   
  absgconv=&converge maxiter=&iter maxfunc=&func; 
 where nrun=&m; 
 max GYI; 
 parms theta1 = &t1, theta2 = &t2; 
 nrun=&m; 
 TPR = 1-probbnrm( ((theta1-m1d)/s1d), ((theta2-m2d)/s2d), pd); 
 FPR = 1-probbnrm( ((theta1-m1h)/s1h), ((theta2-m2h)/s2h), ph); 
 Sens = TPR; 
 Spec = 1 - FPR; 
 GYI = TPR - &R*FPR; 
run; 
quit; 
proc append data=AllSimDataNLP&m base=AllSimData&i; run; 
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proc datasets nolist; delete AllSimDataNLP&m; run; quit; 
%end; 
%mend sim; 
%sim; 
proc printto; run; 
 
data AllSimData&i; 
 set AllSimData&i; 
 lcutoff1 = m1h - (&z*s1h); lcutoff2 = m2h - (&z*s2h); 
 hcutoff1 = m1d + (&z*s1d); hcutoff2 = m2d + (&z*s2d); 
run; 
 
data extreme_sim&i; 
 set AllSimData&i; 
  if theta1<lcutoff1 or theta2<lcutoff2 or theta1>hcutoff1 or theta2>hcutoff2; 
run; 
proc sort data=AllSimData&i; by nrun; run; 
data finalsimdata&i (keep = nrun m1h s1h m2h s2h m1d s1d m2d s2d ph pd lcutoff1 
hcutoff1 lcutoff2 hcutoff2 finalsimtheta1 finalsimtheta2 finalsimGYI finalsimSens 
finalsimSpec good_sim_thetas prob_sim1 prob_sim2 prob_sim12); 
 set AllSimData&i; 
 by nrun; 
 if lcutoff1 <= theta1 <= hcutoff1 and lcutoff2 <= theta2 <= hcutoff2 then   
 good_sim_thetas=1; 
  else good_sim_thetas=0; 
 
 if good_sim_thetas=1 then do; 
  finalsimtheta1 = theta1*good_sim_thetas; 
  finalsimtheta2 = theta2*good_sim_thetas; 
  finalsimGYI = GYI*good_sim_thetas; 
  finalsimSens = Sens*good_sim_thetas; 
  finalsimSpec = Spec*good_sim_thetas; 
 end; 
 if good_sim_thetas=0 then do; 
  finalsimtheta1 = .; 
  finalsimtheta2 = .; 
  finalsimGYI = .; 
  finalsimSens = .; 
  finalsimSpec = .; 
 end; 
 
 /* Determine if theta1, theta2, or both were bad */ 
 if good_sim_thetas = 0 then do; 
  if theta1 < lcutoff1 or theta1 > hcutoff1 then prob_sim1=1; 
  if theta2 < lcutoff2 or theta2 > hcutoff2 then prob_sim2=1; 
 end; 
 
 if good_sim_thetas = 1 then do; 
  prob_sim1=0; prob_sim2=0; 
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 end; 
 
 if prob_sim1=. then prob_sim1=0; if prob_sim2=. then prob_sim2=0; 
 
 if prob_sim1=1 and prob_sim2=1 then prob_sim12=1; else prob_sim12=0; 
run; 
 
/* Bootstrapping the Variance of the Theta1 and Theta2 Estimates for each Test for each 
Simulated Dataset (j of them)*/ 
 
/* Merge the disease and healthy datasets with the final simulated datasets to make sure 
that we're only bootstrapping to calculate variances for acceptable simulated theta BP 
pairs */ 
data cd_finalsim&i; 
 merge disease&i finalsimdata&i (keep=nrun good_sim_thetas); 
 by nrun; 
run; 
data ch_finalsim&i; 
 merge healthy&i finalsimdata&i (keep=nrun good_sim_thetas); 
 by nrun; 
run; 
 
/* Re-sample with Replacement 1,000 times from each of the j simulated datasets, */ 
/* with each Re-sample (Replicate) having 100 observations, N1 from diseased and */ 
/* N0 from healthy */ 
%let seedval1=%eval(123456789+&i); %let seedval0=%eval(987654321+&i); 
 
%macro boot; 
 %do q=1 %to &times; 
  proc surveyselect data=cd_finalsim&i noprint out=bootsim_d&q  
   seed=&seedval1 method=urs samprate=1 outhits rep=&rep; 
   where nrun=&q; 
  run; 
  proc surveyselect data=ch_finalsim&i noprint out=bootsim_h&q  
   seed=&seedval0 method=urs samprate=1 outhits rep=&rep; 
   where nrun=&q; 
  run; 
 
  proc summary data=bootsim_d&q; 
   class nrun replicate; 
   var test1d test2d; 
   output out=bootstats_d&q (where=(replicate ne . and nrun ne .)  
   drop=_freq_ _type_) mean=m1d m2d std=s1d s2d; 
  run; 
  proc summary data=bootsim_h&q; 
   class nrun replicate; 
   var test1h test2h; 
   output out=bootstats_h&q (where=(replicate ne . and nrun ne .)  
   drop=_freq_ _type_) mean=m1h m2h std=s1h s2h; 
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  run; 
  data bootsim_means&q; merge bootstats_d&q bootstats_h&q; run; 
 
  proc sort data=bootsim_d&q; by nrun replicate; run; 
  proc sort data=bootsim_h&q; by nrun replicate; run; 
 
  proc corr data=bootsim_d&q out=Dcorrboot_&q noprint;    
        var test1d test2d;  
     by nrun replicate; 
  run; 
  data Dcorrboot_&q; keep _TYPE_ _NAME_ test1d;  
   set Dcorrboot_&q;  
   where _TYPE_='CORR' and _NAME_='test2d'; 
  run; 
  data Dcorrboot_&q (rename=(test1d=pd)); drop _TYPE_ _NAME_; 
   set Dcorrboot_&q; run; 
  proc corr data=bootsim_h&q out=Hcorrboot_&q noprint;    
         var test1h test2h;  
     by nrun replicate; 
  run; 
  data Hcorrboot_&q; keep _TYPE_ _NAME_ test1h;  
   set Hcorrboot_&q;  
   where _TYPE_='CORR' and _NAME_='test2h'; 
  run; 
  data Hcorrboot_&q (rename=(test1h=ph)); drop _TYPE_ _NAME_; 
   set Hcorrboot_&q; run; 
 
  data BootDataMSDC_&q; merge bootsim_means&q Dcorrboot_&q  
   Hcorrboot_&q; run; 
 
  proc datasets nolist; delete bootsim_d&q bootsim_h&q    
   bootsim_comb&q bootsim_means&q Dcorrboot_&q   
   Hcorrboot_&q; run; quit; 
  data first&q; set BootDataMSDC_&q;  
   if 1<=replicate<=333; run; 
  data middle&q; set BootDataMSDC_&q;  
   if 334<=replicate<=667; run; 
  data last&q; set BootDataMSDC_&q;  
   if 668<=replicate<=1000; run; 
 
 filename junk dummy; 
 proc printto  log=junk; run; 
 proc nlp data=first&q noprint out=AllBootDataNLP_1 tech=&tech    
  absgconv=&converge maxiter=&iter maxfunc=&func; 
  by replicate; 
   max GYI; 
   parms boottheta1 = &t1, boottheta2 = &t2; 
   nrun=&q; 
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   TPR = 1-probbnrm( ((boottheta1-m1d)/s1d), ((boottheta2- 
     m2d)/s2d), pd); 
   FPR = 1-probbnrm( ((boottheta1-m1h)/s1h), ((boottheta2-  
    m2h)/s2h), ph); 
   Sens = TPR; 
   Spec = 1 - FPR; 
   GYI = TPR - &R*FPR; 
  run; quit; 
 
  proc nlp data=middle&q noprint out=AllBootDataNLP_2 tech=&tech  
   absgconv=&converge maxiter=&iter maxfunc=&func; 
   by replicate; 
   max GYI; 
   parms boottheta1 = &t1, boottheta2 = &t2; 
   nrun=&q; 
   TPR = 1-probbnrm( ((boottheta1-m1d)/s1d), ((boottheta2-  
    m2d)/s2d), pd); 
   FPR = 1-probbnrm( ((boottheta1-m1h)/s1h), ((boottheta2-  
   m2h)/s2h), ph); 
   Sens = TPR; 
   Spec = 1 - FPR; 
   GYI = TPR - &R*FPR; 
  run; quit; 
 
  proc nlp data=last&q noprint out=AllBootDataNLP_3 tech=&tech   
   absgconv=&converge maxiter=&iter maxfunc=&func; 
   by replicate; 
   max GYI; 
   parms boottheta1 = &t1, boottheta2 = &t2; 
   nrun=&q; 
   TPR = 1-probbnrm( ((boottheta1-m1d)/s1d), ((boottheta2-  
    m2d)/s2d), pd); 
   FPR = 1-probbnrm( ((boottheta1-m1h)/s1h), ((boottheta2-  
    m2h)/s2h), ph); 
   Sens = TPR; 
   Spec = 1 - FPR; 
   GYI = TPR - &R*FPR; 
  run; quit; 
 
 data AllBootDataNLP; 
  set AllBootDataNLP_1 AllBootDataNLP_2 AllBootDataNLP_3; 
 run; 
 
 proc datasets nolist;  
  append data=AllBootDataNLP base=AllBootData&i; 
  delete BootDataMSDC_&q first&q middle&q last&q AllBootDataNLP_1  
   AllBootDataNLP_2 AllBootDataNLP_3 AllBootDataNLP; 
 run; quit; 
 proc printto; run; 
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%end; 
%mend; 
%boot; 
 
data AllBootData&i; 
 set AllBootData&i (keep = nrun replicate m1h s1h m2h s2h m1d s1d m2d s2d ph  
  pd boottheta1 boottheta2 GYI Sens Spec); 
  lcutoff1 = m1h - (&z*s1h); lcutoff2 = m2h - (&z*s2h); 
  hcutoff1 = m1d + (&z*s1d); hcutoff2 = m2d + (&z*s2d); 
run; 
 
data extreme&i; 
 set allbootdata&i; 
  if boottheta1<lcutoff1 or boottheta2<lcutoff2 or boottheta1>hcutoff1 or  
  boottheta2>hcutoff2; 
run; 
 
data finalbootdata&i (keep = nrun replicate lcutoff1 lcutoff2 hcutoff1 hcutoff2 
 finalboottheta1 finalboottheta2 finalbootSens finalbootSpec good_boot_thetas); 
 set AllBootData&i; 
 by nrun replicate; 
 if lcutoff1 <= boottheta1 <= hcutoff1 and lcutoff2 <= boottheta2 <= hcutoff2 then 
 good_boot_thetas=1; 
  else good_boot_thetas=0; 
  
 if good_boot_thetas=1 then do; 
  finalboottheta1 = boottheta1; 
  finalboottheta2 = boottheta2; 
  finalbootSens = Sens; 
  finalbootSpec = Spec; 
 end; 
 if good_boot_thetas=0 then do; 
  finalboottheta1 = .; 
  finalboottheta2 = .; 
  finalbootSens = .; 
  finalbootSpec = .; 
 end; 
run; 
 
/* Calculate the Variances of  Theta1 and Theta2 for each of the Bootstrapped Datasets' 
1,000 Replicates */ 
proc sort data=finalbootdata&i; by nrun; run; 
proc corr data = finalbootdata&i cov out=OutCov&i (type=cov) nocorr noprint; 
 var finalboottheta1 finalboottheta2; 
 by nrun; 
 where good_boot_thetas=1; 
run; 
data OutCov1_&i; 
 set OutCov&i;  
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 where _TYPE_='COV'; 
 by nrun; 
run; 
data S1_&i S2_&i; 
 set OutCov1_&i; 
 by nrun; 
 first=first.nrun; 
 last=last.nrun; 
 if first.nrun = 1 then output S1_&i; 
 if last.nrun = 1 then output S2_&i; 
run; 
data S1_&i; 
 set S1_&i (keep = nrun finalboottheta1 finalboottheta2); 
 rename finalboottheta1=VarT1; 
 rename finalboottheta2=CovT1T2; 
run; 
data S2_&i; 
 set S2_&i (keep = nrun finalboottheta2); 
 rename finalboottheta2=VarT2; 
run; 
data VarCov&i; 
 merge S1_&i S2_&i; 
 by nrun; 
run; 
/* Calculating the Mean Bootstrapped Theta's */ 
proc means data = finalbootdata&i noprint; 
 by nrun; 
 var finalboottheta1; 
 where good_boot_thetas=1; 
 output out = Means1_&i mean = MeanTheta1; 
run; 
proc means data = finalbootdata&i noprint; 
 by nrun; 
 var finalboottheta2; 
 where good_boot_thetas=1; 
 output out = Means2_&i mean = MeanTheta2; 
run; 
data Means&i; 
 merge Means1_&i Means2_&i; 
 by nrun; 
 drop _type_ _freq_; 
run; 
 
proc summary data=finalbootdata&i; 
 class nrun; 
 var finalbootSens finalbootSpec; 
 output out=bootvarSS&i (where=(nrun>.) drop=_freq_ _type_) var=VarSe VarSp; 
 where good_boot_thetas=1; 
run; 
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data Means_VarCov&i; merge Means&i VarCov&i; by nrun; run; 
data SimThetaVarCov&i; merge finalsimdata&i Means_VarCov&i bootvarSS&i;
 by nrun;  run; 
 
/* Calculation of the Simultaneous (1-alpha)100% CI's for the Estimated Thresholds */ 
data SimConfInt&i; 
 set SimThetaVarCov&i; 
 f = finv(0.95, &p, &TSS-&p); 
 cv = probit(1-0.05/(2*&p)); 
 lobon1 = finalsimtheta1 - cv*sqrt(varT1); 
 upbon1 = finalsimtheta1 + cv*sqrt(varT1); 
 lobon2 = finalsimtheta2 - cv*sqrt(varT2); 
 upbon2 = finalsimtheta2 + cv*sqrt(varT2); 
run; 
 
/* Combine Original "True" Threshold Values with the Estimated Simultaneous CI's to ID 
if */ 
/* the True Values lie within the SCIs/CRs.. Done with an Indicator Variable 0 or 1. */ 
/* This will be used to estimate the Coverage. Additionally the area of each SCI/CR is 
calculated. */ 
data SCI_CR&i; 
  if _n_ = 1 then set Parms_TrueValues&i; 
 set SimConfInt&i (keep=nrun good_sim_thetas finalsimtheta1 finalsimtheta2  
  finalsimSens finalsimSpec finalsimGYI MeanTheta1 MeanTheta2  
  VarT1 VarT2 CovT1T2 VarSe VarSp f lobon1 upbon1 lobon2 upbon2  
  prob_sim1 prob_sim2 prob_sim12); 
 
 if good_sim_thetas=0 then do; 
  MeanTheta1=.; MeanTheta2=.; 
  VarT1=.; VarT2=.; CovT1T2=.; VarSe=.; VarSp=.; 
 end; 
 
 /* 95% Simultaneous Confidence Regions for each of the Simulated Dataset 
 Theta1 and Theta2 Optimal Threshold Values */ 
 if lobon1 <= truetheta1 <= upbon1 AND lobon2 <= truetheta2 <= upbon2 then 
 TrueInSCI = 1; 
  else TrueInSCI=0; 
 if lobon1 = . or upbon1 = . or lobon2 = . or upbon2 = . then TrueInSCI=.; 
 
 /* Calculates the width of each CI for each test */ 
 SCI_wTest1 = upbon1-lobon1; SCI_wTest2 = upbon2-lobon2; 
 
 /* Calculates the area of the rectangular Simultaneous CI region */ 
 SCI_area = SCI_wTest1 * SCI_wTest2; 
 
 /* 95% Confidence Regions for each of the Simulated Dataset Theta1 and 
 Theta2 Optimal Threshold Values */  
 /* The Variances and Covariances were estimated using the Bootstrapped 
 Datasets from each of the Simulated Datasets */ 
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 if good_sim_thetas=1 then do; 
  det = (VarT1*VarT2) - ((CovT1T2)**2); 
  matmult = (VarT2*(finalsimtheta1 - truetheta1)**2)  
    - (2*CovT1T2*(finalsimtheta1 - truetheta1)*(finalsimtheta2 -  
   truetheta2))  + (VarT1*(finalsimtheta2 - truetheta2)**2); 
  LHS = (1/det) * matmult; 
  RHS = ( (&p*(&TSS-1)) / (&TSS-&p) ) * f; 
 end; 
 if good_sim_thetas=0 then do; 
  det=.; matmult=.; LHS=.;  RHS=.; 
 end; 
  
 if LHS <= RHS then TrueInConfReg = 1; 
 if LHS > RHS then TrueInConfReg = 0; 
 if LHS = . and RHS = . then TrueInConfReg = .; 
/* Calculate the Area of the CRs */ 
 trace = VarT1 + VarT2; 
 lambda1 = ( trace + Sqrt( trace**2 - 4*det ) ) / 2; 
 lambda2 = ( trace - Sqrt( trace**2 - 4*det ) ) / 2; 
 HLength_lambda1 = Sqrt(lambda1) * Sqrt( RHS ); 
 HLength_lambda2 = Sqrt(lambda2) * Sqrt( RHS ); 
 Area_CR = &pi * HLength_lambda1 * Hlength_lambda2; 
 correlation = ( CovT1T2 / (sqrt(VarT1*VarT2)) ); 
 
run; 
data all_SCI_CR&i; 
 set SCI_CR&i (drop = f det matmult LHS RHS trace lambda1 lambda2   
  HLength_lambda1 HLength_lambda2); 
run; 
 
data bias_MSE_SCI_CR&i; set all_SCI_CR&i; 
 biasTheta1 = finalsimtheta1 - truetheta1; 
 biasTheta2 = finalsimtheta2 - truetheta2; 
 biasSens = finalsimSens - trueSens; 
 biasSpec = finalsimSpec - trueSpec; 
 
 rmse_theta1 = sqrt( VarT1 + (biasTheta1)**2 ); 
 rmse_theta2 = sqrt( VarT2 + (biasTheta2)**2 ); 
 rmse_Sens = sqrt( VarSe + (biasSens)**2 ); 
 rmse_Spec = sqrt( VarSp + (biasSpec)**2 ); 
 
 if biasSens > 0 then flagOverSens=1;  
 if biasSens < 0 then flagOverSens=0;  
 if biasSens = . then flagOverSens = .; 
 if biasSpec > 0 then flagOverSpec=1;  
 if biasSpec < 0 then flagOverSpec=0;  
 if biasSpec = . then flagOverSpec = .; 
run; 
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/* Estimate the Coverage of the Simultaneous CI's and Confidence Regions */ 
/* Calculates the number of times the sensitivity and specificity from the simulated data 
is over/underestimated from the true values */ 
proc freq data = bias_MSE_SCI_CR&i noprint; 
 table good_sim_thetas / list norow nocol nofreq nocum out=num_missing&i; 
 table prob_sim1 / list norow nocol nofreq nocum out=prob_T1_&i; 
 table prob_sim2 / list norow nocol nofreq nocum out=prob_T2_&i; 
 table prob_sim12 / list norow nocol nofreq nocum out=prob_T1T2_&i; 
 table TrueInSCI / list norow nocol nofreq nocum out=Coverage_SCI&i; 
 table TrueInConfReg / list norow nocol nofreq nocum out=Coverage_CR&i; 
 table flagOverSens / list norow nocol nofreq nocum out=Overest_SimSe&i; 
 table flagOverSpec / list norow nocol nofreq nocum out=Overest_SimSp&i; 
run; 
 
/* Calculates the mean Bias and RMSE for each simulated theta1 and theta2 value from 
the true values */ 
proc means data = bias_MSE_SCI_CR&i n mean median std q1 q3 noprint; 
 var biasTheta1 biasTheta2 biasSens biasSpec rmse_theta1 rmse_theta2   
  rmse_Sens rmse_Spec; 
 output out=bias_sim&i (drop=_type_ _freq_)  
 mean=mean_biasT1 mean_biasT2 mean_biasSe mean_biasSp mean_RMSET1  
 mean_RMSET2 mean_RMSESe mean_RMSESp 
  median=med_biasT1 med_biasT2 med_biasSe med_biasSp med_RMSET1 
 med_RMSET2 med_RMSESe med_RMSESp; 
run; 
/* Calculates the mean/median of the Variances, Covariances, and computed correlation 
*/ 
/* Compute the mean/median of the width of the SCIs, and the area of the CR */ 
proc summary data=bias_MSE_SCI_CR&i; 
 var VarT1 VarT2 CovT1T2 correlation SCI_wTest1 SCI_wTest2 Area_CR; 
 output out=VarCovCorrWidthArea_Boot&i (drop=_freq_ _type_)  
   mean=mean_VarT1 mean_VarT2 mean_CovT1T2 mean_comp_corr 
 meanSCI_width1 meanSCI_width2 meanCR_area      
 median=med_VarT1 med_VarT2 med_CovT1T2 med_comp_corr 
 medSCI_width1 medSCI_width2 medCR_area; 
run; 
 
/* Calculates the correlation between the simulated theta1 and theta2 values */ 
proc corr data=finalsimdata&i outp=auto_corr_simthetas&i noprint; 
 var finalsimtheta1 finalsimtheta2; 
 where good_sim_thetas=1; 
run; 
data auto_corr_simthetas&i; keep _TYPE_ _NAME_ finalsimtheta1;  
 set auto_corr_simthetas&i;  
 where _TYPE_='CORR' and _NAME_='finalsimtheta2'; 
run; 
data auto_corr_simthetas&i (rename=(finalsimtheta1=auto_corr)); drop _TYPE_ 
 _NAME_; set auto_corr_simthetas&i; run; 
 



www.manaraa.com

    160

/* Create Parameter Set Data File */ 
proc sort data=bias_MSE_SCI_CR&i; by nrun; run; 
proc sort data=finalsimdata&i; by nrun; run; 
data final_parm_set_nosim&i; 
 set bias_MSE_SCI_CR&I; 
 by nrun; 
run; 
data final_parm_set_test&i; 
 merge final_parm_set_nosim&i finalsimdata&i (keep = nrun m1h m2h m1d m2d 
 s1h s2h s1d s2d ph pd); 
 by nrun; 
 rename m1h=sim_m1h; rename m2h=sim_m2h;  
 rename m1d=sim_m1d; rename m2d=sim_m2d; 
 rename s1h=sim_s1h; rename s2h=sim_s2h;  
 rename s1d=sim_s1d; rename s2d=sim_s2d; 
 rename ph=sim_ph; rename pd=sim_pd; 
run; 
 
data bp.final_parm_set&i; 
 merge final_parm_set_nosim&i (keep=n_d n_h R ph pd AUC1 AUC2 b1 b2)  
  final_parm_set_test&i (drop=n_d n_h R AUC1 AUC2 b1 b2); 
 TSS = &TSS; k=&k; 
run; 
 
/* Create Parameterization File - Results of Simulation Studies */ 
data num_missing&i; set num_missing&i (keep=good_sim_thetas count);  
 where good_sim_thetas=0; drop good_sim_thetas; 
 rename count=Num_Sim_Missing; label count = 'Num_Sim_Missing'; 
run; 
data prob_T1_&i; set prob_T1_&i (keep= prob_sim1 count);  
 where prob_sim1=1; drop prob_sim1; 
 rename count=Num_Prob_T1; label count = 'Num_Prob_T1'; 
run; 
data prob_T2_&i; set prob_T2_&i (keep= prob_sim2 count);  
 where prob_sim2=1; drop prob_sim2; 
 rename count=Num_Prob_T2; label count = 'Num_Prob_T2'; 
run; 
data prob_T1T2_&i; set prob_T1T2_&i (keep= prob_sim12 count);  
 where prob_sim12=1; drop prob_sim12; 
 rename count=Num_Prob_T1T2; label count = 'Num_Prob_T1T2'; 
run; 
data Coverage_SCI&i; set Coverage_SCI&i (keep=TrueInSCI percent);  
 where TrueInSCI=1; drop TrueInSCI; 
 rename percent=SCI_Coverage; label percent = 'SCI_Coverage'; 
run; 
data Coverage_CR&i; set Coverage_CR&i (keep=TrueInConfReg percent);  
 where TrueInConfReg=1; drop TrueInConfReg; 
 rename percent=CR_Coverage; label percent = 'CR_Coverage'; 
run; 



www.manaraa.com

    161

data Overest_SimSe&i; set Overest_SimSe&i (keep=flagOverSens percent);
  
 where flagOverSens=1; drop flagOverSens; 
 rename percent=Perc_Overest_Se; label percent = 'Perc_Overest_Se'; 
run; 
data Overest_SimSp&i; set Overest_SimSp&i (keep=flagOverSpec percent);  
 where flagOverSpec=1; drop flagOverSpec; 
 rename percent=Perc_Overest_Sp; label percent = 'Perc_Overest_Sp'; 
run; 
 
/* Creates Final Parameterization Results - 1 observation for each Parameter set (Wide) 
*/ 
data results&i; 
 merge sasparms NRTrueValues&i VarCovCorrWidthArea_Boot&i    
 auto_corr_simthetas&i bias_sim&i Num_missing&i      
 Coverage_SCI&i Coverage_CR&i Overest_SimSe&i Overest_SimSp&I; 
 N_H = &N0; N_D=&N1; 
 if Num_Sim_Missing = . then Num_Sim_Missing=0; 
run; 
proc append data=results&i base=bp.BPallresults; run; 
 
/* Creates "Problem" file */ 
data problems&i; 
 merge sasparms Num_missing&i prob_T1_&i prob_T2_&i prob_T1T2_&i; 
 N_H = &N0; N_D=&N1; 
 /* If the numbers below are missing, there were no missing values so no dataset 
 was created. For completeness, force these as 0's */ 
 if Num_Sim_Missing = . then Num_Sim_Missing=0; 
 if Num_Prob_T1 = . then Num_Prob_T1=0; 
 if Num_Prob_T2 = . then Num_Prob_T2=0; 
 if Num_Prob_T1T2 = . then Num_Prob_T1T2=0; 
run; 
proc append data=problems&i base=bp.BPallproblems; run; 

/* Empirical */ 
options ps=65 ls=116 obs=max formdlim=# nodate nonumber;  
libname BP 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BP'; 
libname BPemp 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BP\Empirical'; 
 
/* Defines what parameter set these datasets belong to */ 
/*%let i=101;*/ 
%macro EMP; 
%do i=1 %to 144; 
 
data sasparms;  
 set BP.sasparms; if _n_=&i;  
 call symput('TSS',TSS);  call symput('k',k); 
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 call symput('AUC1',AUC1);  call symput('AUC2',AUC2);  /*  
 call symput('ph',ph); call symput('pd',pd);  
 call symput('s1d',s1d); call symput('s2d',s2d); 
run; 
 
%let pi=4*atan(1); 
%let times=1000; %let rep=1000; %let p=2; %let z=1.645;  
%let bratio1=s1h/s1d; %let bratio2=s2h/s2d; 
%let R=1; 
%let N0=floor(&TSS/(&k+1));  %let N1=&TSS - &N0;  
%let m1h=0; %let s1h=1; %let m2h=0; %let s2h=1; 
%let converge=0.001; %let iter=1000; %let func=1000; %let tech=nrridg; 
 
data parms&i; 
 
 R=&R; ph=&ph; pd=&pd; AUC1 = &AUC1; AUC2 = &AUC2; 
 m1h=&m1h; s1h=&s1h; m2h=&m2h; s2h=&s2h; 
 s1d=&s1d; s2d=&s2d; 
 b1=s1h/s1d; b2=s2h/s2d; 
 m1d = ( s1d * Sqrt(1 + (b1)**2) * probit(AUC1) ) + m1h; 
 m2d = ( s2d * Sqrt(1 + (b2)**2) * probit(AUC2) ) + m2h; 
 
 Ca1=(m1d-m1h)/s1d; Ca2=(m2d-m2h)/s2d; 
 Cauc1 = probnorm( Ca1 / sqrt(1+b1**2) ); 
 Cauc2 = probnorm( Ca2 / sqrt(1+b2**2) ); 
 
 b1 = s1h / s1d; a1 = (m1d - m1h) / s1d; 
 b2 = s2h / s2d; a2 = (m2d - m2h) / s2d; 
run; 
 
proc nlp data=parms&i noprint out=NRTrueValues&i tech=&tech absgconv=&converge  
  maxiter=&iter maxfunc=&func; 
 max trueGYI; 
 parms truetheta1 = -4 to 4 by 0.1, truetheta2 = -4 to 4 by 0.1; 
 trueTPR = 1-probbnrm( ((truetheta1-m1d)/s1d), ((truetheta2-m2d)/s2d), pd); 
 trueFPR = 1-probbnrm( ((truetheta1-m1h)/s1h), ((truetheta2-m2h)/s2h), ph); 
 trueSens = trueTPR; 
 trueSpec = 1 - trueFPR; 
 trueGYI = trueTPR - &R*trueFPR; 
run; 
 
data sim; 
 set NRTrueValues&i; 
 call symput('t1',truetheta1); 
 call symput('t2',truetheta2); 
run; 
 
data Parms_TrueValues&i; 
 N_d=&N1; N_h=&N0; R=&R; 
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 merge Parms&i (keep=AUC1 AUC2 b1 b2 ph pd) NRTrueValues&i 
 (keep=truetheta1 truetheta2 trueGYI trueSens trueSpec); 
run; 
 
/* Simulating Data */ 
%let seed1=%eval(12345+&i); %let seed2=%eval(54321+&i); 
data disease&i (keep=id test1d test2d nrun h_d_flag) healthy&i (keep=id test1h test2h 
nrun h_d_flag); 
 set parms&i; 
 cd=sqrt(1-pd**2); ch=sqrt(1-ph**2); 
  do k=1 to &times; 
   nrun=k; 
   do l=1 to &N1; 
    id=l; 
    h_d_flag=1; 
     test1d = rannor(&seed1); 
     test2d = pd*test1d+cd*rannor(&seed1); 
           test1d = m1d + s1d*test1d; 
           test2d = m2d + s2d*test2d; 
            output disease&i; 
   end; 
   do j=1 to &N0; 
    id=j; 
    h_d_flag=0; 
     test1h = rannor(&seed2); 
           test2h = ph*test1h+ch*rannor(&seed2); 
           test1h = m1h + s1h*test1h; 
           test2h = m2h + s2h*test2h; 
            output healthy&i; 
   end; 
  end; 
run; 
 
/* Computing the Empirical Estimates to Compare with those chosen by the BP strategy 
*/ 
data disease_healthy&i (drop=id);  
 set disease&i (rename=(test1d=test1 test2d=test2)) healthy&i 
(rename=(test1h=test1 test2h=test2)); 
run; 
proc sort data=disease_healthy&i; by nrun; run; 
 
data all_empirical&i bpemp.empirical_final&i; set disease_healthy&i;  
 by nrun; 
 retain yi_mx x_mx y_mx sens_mx spec_mx; 
 N_d=&N1; N_h=&N0; N=&TSS; 
 bpsum_fn =0; bpsum_sp=0; 
 thresh_x=test1; thresh_y=test2;  
 do q=1 to N; 
  set disease_healthy&i point=q; 
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  if test2<=thresh_y  and test1<=thresh_x then do;  
      if h_d_flag=1 then bpsum_fn =bpsum_fn +1; 
   if h_d_flag=0 then bpsum_sp=bpsum_sp+1; 
     end; 
 end; 
 sens_bp=1-bpsum_fn/N_D; 
 spec_bp=bpsum_sp/N_H; 
 youden=sens_bp+spec_bp-1; 
 
 if first.nrun=1 then do; 
  yi_mx=youden; x_mx=thresh_x; y_mx=thresh_y;
 sens_mx=sens_bp; spec_mx=spec_bp; 
 end; 
 if youden>yi_mx then do; 
  yi_mx=youden; x_mx=thresh_x; y_mx=thresh_y;
 sens_mx=sens_bp; spec_mx=spec_bp; 
 end; 
 if youden=yi_mx and sens_bp>sens_mx then do; 
  x_mx=thresh_x; y_mx=thresh_y; sens_mx=sens_bp;
 spec_mx=spec_bp; 
 end; 
  output all_empirical&i; 
 if last.nrun=1 then output bpemp.empirical_final&i; 
run; 
 
data empirical_final_red&i; 
  if _n_ = 1 then set Parms_TrueValues&i; 
 set bpemp.empirical_final&i (keep = nrun x_mx y_mx yi_mx sens_mx spec_mx); 
run; 
 
data bias_emp&i; set empirical_final_red&i; 
 biasEmpTheta1 = x_mx - truetheta1; 
 biasEmpTheta2 = y_mx - truetheta2; 
 biasEmpSens = sens_mx - trueSens; 
 biasEmpSpec = spec_mx - trueSpec; 
 
 if biasEmpSens > 0 then flagOverEmpSens=1; if biasEmpSens < 0 then 
 flagOverEmpSens=0;  
 if biasEmpSpec > 0 then flagOverEmpSpec=1; if biasEmpSpec < 0 then 
 flagOverEmpSpec=0; \ 
run; 
 
/* Calculates the mean Bias and RMSE for each empirical theta1 and theta2 value from 
the true values */ 
proc means data = bias_emp&i n mean median std q1 q3 noprint; 
 var biasEmpTheta1 biasEmpTheta2 biasEmpSens biasEmpSpec; 
 output out=bias_empirical&i (drop=_type_ _freq_)  
 mean=mean_biasempT1 mean_biasempT2 mean_biasempSe 
 mean_biasempSp 
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 median=med_biasempT1 med_biasempT2 med_biasempSe 
 med_biasempSp; 
run; 
proc freq data=bias_emp&i noprint; 
 table flagOverEmpSens / list norow nocol nofreq nocum out=Overest_EmpSe&i; 
 table flagOverEmpSpec / list norow nocol nofreq nocum out=Overest_EmpSp&i; 
run; 
 
data Overest_EmpSe&i; set Overest_EmpSe&i (keep=flagOverEmpSens percent);  
 where flagOverEmpSens=1; drop flagOverEmpSens; 
 rename percent=Perc_Overest_Emp_Se;  
 label percent = 'Perc_Overest_Emp_Se'; 
run; 
data Overest_EmpSp&i; set Overest_EmpSp&i (keep=flagOverEmpSpec percent);  
 where flagOverEmpSpec=1; drop flagOverEmpSpec; 
 rename percent=Perc_Overest_Emp_Sp;  
 label percent = 'Perc_Overest_Emp_Sp'; 
run; 
 
data allemp&i; 
 set bias_emp&i (keep=yi_mx x_mx y_mx sens_mx spec_mx biasEmpTheta1  
  biasEmpTheta2 biasEmpSens biasEmpSpec flagOverEmpSens   
  flagOverEmpSpec); 
 parameter_set_number=&i; 
run; 
 
data allemp_results&i; 
 merge bias_empirical&i Overest_EmpSe&i Overest_EmpSp&i; 
 parameter_set_number=&i; 
run; 
 
proc append data=allemp&i base=bpemp.BPallempicaldata; run; 
proc append data=allemp_results&i base=bpemp.BPallempiricalresults; run; 
 
%end; 
%mend EMP; 
%EMP; 

 

8.4.3 BN Simulations and Empirical Estimates 

options ps=65 ls=116 obs=max formdlim=# nodate nonumber;  
libname BN 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BN'; 
 
/* Defines what parameter set these datasets belong to */ 
%let i=1; 
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data sasparms;  
 set BN.sasparms3; if _n_=&i;  
 call symput('TSS',TSS);  call symput('k',k); 
 call symput('AUC1',AUC1);  call symput('AUC2',AUC2);  /*  
 call symput('ph',ph); call symput('pd',pd);  
 call symput('s1d',s1d); call symput('s2d',s2d); 
run; 
 
%let pi=4*atan(1); 
%let times=1000; %let rep=1000; %let p=2;  %let z=1.645;  
%let bratio1=s1h/s1d; %let bratio2=s2h/s2d; 
%let R=1; 
%let N0=floor(&TSS/(&k+1));  %let N1=&TSS - &N0;  
%let m1h=0; %let s1h=1; %let m2h=0; %let s2h=1; 
%let converge=0.001; %let iter=1000; %let func=1000; %let tech=nrridg; 
 
data parms&i; 
 
 R=&R; ph=&ph; pd=&pd; AUC1 = &AUC1; AUC2 = &AUC2; 
 m1h=&m1h; s1h=&s1h; m2h=&m2h; s2h=&s2h; 
 s1d=&s1d; s2d=&s2d; 
 b1=s1h/s1d; b2=s2h/s2d; 
 m1d = ( s1d * Sqrt(1 + (b1)**2) * probit(AUC1) ) + m1h; 
 m2d = ( s2d * Sqrt(1 + (b2)**2) * probit(AUC2) ) + m2h; 
 
 Ca1=(m1d-m1h)/s1d; Ca2=(m2d-m2h)/s2d; 
 Cauc1 = probnorm( Ca1 / sqrt(1+b1**2) ); 
 Cauc2 = probnorm( Ca2 / sqrt(1+b2**2) ); 
 
 b1 = s1h / s1d; a1 = (m1d - m1h) / s1d; 
 b2 = s2h / s2d; a2 = (m2d - m2h) / s2d; 
run; 
 
proc nlp data=parms&i noprint out=NRTrueValues&i tech=&tech absgconv=&converge  
  maxiter=&iter maxfunc=&func; 
 max trueGYI; 
 parms truetheta3 = -4 to 4 by 0.1, truetheta4 = -4 to 4 by 0.1; 
 trueTPR = 1-probnorm((truetheta3-m1d)/s1d)-probnorm((truetheta4-m2d)/s2d) +  
  probbnrm( ((truetheta3-m1d)/s1d), ((truetheta4-m2d)/s2d), pd); 
 trueFPR = 1-probnorm((truetheta3-m1h)/s1h)-probnorm((truetheta4-m2h)/s2h) +  
  probbnrm( ((truetheta3-m1h)/s1h), ((truetheta4-m2h)/s2h), ph); 
 trueSens = trueTPR; 
 trueSpec = 1 - trueFPR; 
 trueGYI = trueTPR - &R*trueFPR; 
run; 
 
data sim; 
 set NRTrueValues&i; 
 call symput('t3',truetheta3); 
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 call symput('t4',truetheta4); 
run; 
 
data Parms_TrueValues&i; 
 N_d=&N1; N_h=&N0; R=&R; 
 merge Parms&i (keep=AUC1 AUC2 b1 b2 ph pd)  
 NRTrueValues&i (keep=truetheta3 truetheta4 trueGYI trueSens trueSpec); 
run; 
 
/* Simulating Data */ 
%let seed1=%eval(12345+&i); %let seed2=%eval(54321+&i); 
data disease&i (keep=id test3d test4d nrun h_d_flag) healthy&i (keep=id test3h test4h 
nrun h_d_flag); 
 set parms&i; 
 cd=sqrt(1-pd**2); ch=sqrt(1-ph**2); 
  do k=1 to &times; 
   nrun=k; 
   do l=1 to &N1; 
    id=l; 
    h_d_flag=1; 
     test3d = rannor(&seed1); 
     test4d = pd*test3d+cd*rannor(&seed1); 
           test3d = m1d + s1d*test3d; 
           test4d = m2d + s2d*test4d; 
            output disease&i; 
   end; 
   do j=1 to &N0; 
    id=j; 
    h_d_flag=0; 
     test3h = rannor(&seed2); 
           test4h = ph*test3h+ch*rannor(&seed2); 
           test3h = m1h + s1h*test3h; 
           test4h = m2h + s2h*test4h; 
            output healthy&i; 
   end; 
  end; 
run; 
 
/* Combine the two datasets and sort by disease status */ 
data combined&i; merge disease&i healthy&i; by nrun id; run; 
 
/* Finding the Means, Variances, and Correlations for each simulated dataset sampled 
from the specified set of parameters */ 
proc summary data=combined&i; 
 class nrun; 
 var test3d test4d test3h test4h; 
 output out=simstats&i (where=(nrun>.) drop=_freq_ _type_)  
 mean=m1d m2d m1h m2h std=s1d s2d s1h s2h; 
run; 
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/*Diseased  correlation for each simulated dataset*/ 
proc corr data=combined&i out=Dcorr&i noprint;    
      var test3d test4d;  
   by nrun; 
run; 
data Dcorr&i; keep _TYPE_ _NAME_ test3d;  
 set Dcorr&i;  
 where _TYPE_='CORR' and _NAME_='test4d'; 
run; 
data Dcorr&i (rename=(test3d=pd)); drop _TYPE_ _NAME_; set Dcorr&i; run; 
/* Non-diseased correlation for each simulated dataset*/ 
proc corr data=combined&i out=Hcorr&i noprint;    
      var test3h test4h;  
   by nrun; 
run; 
data Hcorr&i; keep _TYPE_ _NAME_ test3h;  
 set Hcorr&i;  
 where _TYPE_='CORR' and _NAME_='test4h'; 
run; 
data Hcorr&i (rename=(test3h=ph)); drop _TYPE_ _NAME_; set Hcorr&i; run; 
 
data SimDataMSDC&i; merge simstats&i Dcorr&i Hcorr&i; run; 
 
filename junk dummy; 
proc printto  log=junk; run; 
%macro sim; 
%do m=1 %to &times; 
proc nlp data=SimDataMSDC&i noprint out=AllSimDataNLP&m tech=&tech   
  absgconv=&converge maxiter=&iter maxfunc=&func; 
 where nrun=&m; 
 max GYI; 
 parms theta3 = &t3, theta4 = &t4; 
 nrun=&m; 
 TPR = 1-probnorm((theta3-m1d)/s1d)-probnorm((theta4-m2d)/s2d) + probbnrm(  
  ((theta3-m1d)/s1d), ((theta4-m2d)/s2d), pd); 
 FPR = 1-probnorm((theta3-m1h)/s1h)-probnorm((theta4-m2h)/s2h) + probbnrm(  
  ((theta3-m1h)/s1h), ((theta4-m2h)/s2h), ph); 
 Sens = TPR; 
 Spec = 1 - FPR; 
 GYI = TPR - &R*FPR; 
run; 
quit; 
proc append data=AllSimDataNLP&m base=AllSimData&i; run; 
proc datasets nolist; delete AllSimDataNLP&m; run; quit; 
%end; 
%mend sim; 
%sim; 
proc printto; run; 
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data AllSimData&i; 
 set AllSimData&i (drop=_obs_ _type_); 
 lcutoff1 = m1h - (&z*s1h); lcutoff2 = m2h - (&z*s2h); 
 hcutoff1 = m1d + (&z*s1d); hcutoff2 = m2d + (&z*s2d); 
run; 
 
data extreme_sim&i; 
 set AllSimData&i; 
  if theta3<lcutoff1 or theta4<lcutoff2 or theta3>hcutoff1 or theta4>hcutoff2; 
run; 
 
proc sort data=AllSimData&i; by nrun; run; 
data finalsimdata&i (keep = nrun m1h s1h m2h s2h m1d s1d m2d s2d ph pd lcutoff1  
  hcutoff1 lcutoff2 hcutoff2 finalsimtheta3 finalsimtheta4 finalsimGYI  
  finalsimSens finalsimSpec good_sim_thetas prob_sim3 prob_sim4  
  prob_sim34); 
 set AllSimData&i; 
 by nrun; 
  
 if lcutoff1 <= theta3 <= hcutoff1 and lcutoff2 <= theta4 <= hcutoff2  
 then good_sim_thetas=1; 
  else good_sim_thetas=0; 
 
 if good_sim_thetas=1 then do; 
  finalsimtheta3 = theta3; 
  finalsimtheta4 = theta4; 
  finalsimGYI = GYI; 
  finalsimSens = Sens; 
  finalsimSpec = Spec; 
 end; 
 if good_sim_thetas=0 then do; 
  finalsimtheta3 = .; 
  finalsimtheta4 = .; 
  finalsimGYI = .; 
  finalsimSens = .; 
  finalsimSpec = .; 
 end; 
 
 /* Determine if theta1, theta2, or both were bad */ 
 if good_sim_thetas = 0 then do; 
  if theta3 < lcutoff1 or theta3 > hcutoff1 then prob_sim3=1; 
  if theta4 < lcutoff2 or theta4 > hcutoff2 then prob_sim4=1; 
 end; 
 
 if good_sim_thetas = 1 then do; 
  prob_sim3=0; prob_sim4=0; 
 end; 
 
 if prob_sim3=. then prob_sim3=0; if prob_sim4=. then prob_sim4=0; 
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 if prob_sim3=1 and prob_sim4=1 then prob_sim34=1; else 
prob_sim34=0; 
run; 
 
 
/* Bootstrapping the Variance of the Theta3 and Theta4 Estimates for each Test for each 
Simulated Dataset (j of them)*/ 
 
/* Merge the disease and healthy datasets with the final simulated datasets to make sure 
that we're only bootstrapping to calculate variances for acceptable simulated theta BN 
pairs */ 
data cd_finalsim&i; 
 merge disease&i finalsimdata&i (keep=nrun good_sim_thetas); 
 by nrun; 
run; 
data ch_finalsim&i; 
 merge healthy&i finalsimdata&i (keep=nrun good_sim_thetas); 
 by nrun; 
run; 
 
/* Re-sample with Replacement 1,000 times from each of the j simulated datasets, */ 
/* with each Re-sample (Replicate) having 100 observations, N1 from diseased and */ 
/* N0 from healthy */ 
%let seedval1=%eval(123456789+&i); %let seedval0=%eval(987654321+&i); 
 
%macro boot; 
 %do q=1 %to &times; 
  proc surveyselect data=cd_finalsim&i noprint out=bootsim_d&q  
   seed=&seedval1 method=urs samprate=1 outhits rep=&rep; 
   where nrun=&q; 
  run; 
  proc surveyselect data=ch_finalsim&i noprint out=bootsim_h&q  
   seed=&seedval0 method=urs samprate=1 outhits rep=&rep; 
   where nrun=&q; 
  run; 
 
  /* Calculate means and sd's for disease and healthy */ 
  proc summary data=bootsim_d&q; 
   class nrun replicate; 
   var test3d test4d; 
   output out=bootstats_d&q (where=(replicate ne . and nrun ne .)  
   drop=_freq_ _type_) mean=m1d m2d std=s1d s2d; 
  run; 
  proc summary data=bootsim_h&q; 
   class nrun replicate; 
   var test3h test4h; 
   output out=bootstats_h&q (where=(replicate ne . and nrun ne .)  
   drop=_freq_ _type_) mean=m1h m2h std=s1h s2h; 
  run; 
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  data bootsim_means&q; merge bootstats_d&q bootstats_h&q;
 run; 
 
  proc sort data=bootsim_d&q; by nrun replicate; run; 
  proc sort data=bootsim_h&q; by nrun replicate; run; 
 
  /*Diseased  correlation for each bootstrap dataset*/ 
  proc corr data=bootsim_d&q out=Dcorrboot_&q noprint;    
        var test3d test4d;  
     by nrun replicate; 
  run; 
  data Dcorrboot_&q; keep _TYPE_ _NAME_ test3d;  
   set Dcorrboot_&q;  
   where _TYPE_='CORR' and _NAME_='test4d'; 
  run; 
  data Dcorrboot_&q (rename=(test3d=pd)); drop _TYPE_ _NAME_; 
   set Dcorrboot_&q; run; 
  /* Non-diseased correlation for each bootstrap dataset*/ 
  proc corr data=bootsim_h&q out=Hcorrboot_&q noprint;    
        var test3h test4h;  
     by nrun replicate; 
  run; 
  data Hcorrboot_&q; keep _TYPE_ _NAME_ test3h;  
   set Hcorrboot_&q;  
   where _TYPE_='CORR' and _NAME_='test4h'; 
  run; 
  data Hcorrboot_&q (rename=(test3h=ph)); drop _TYPE_ _NAME_; 
   set Hcorrboot_&q; run; 
 
  data BootDataMSDC_&q;  
   merge bootsim_means&q Dcorrboot_&q Hcorrboot_&q; run; 
 
  proc datasets nolist; delete bootsim_d&q bootsim_h&q    
    bootsim_comb&q bootsim_means&q Dcorrboot_&q  
    Hcorrboot_&q; run; quit; 
  data first&q; set BootDataMSDC_&q;  
   if 1<=replicate<=333; run; 
  data middle&q; set BootDataMSDC_&q;  
   if 334<=replicate<=667; run; 
  data last&q; set BootDataMSDC_&q;  
   if 668<=replicate<=1000; run; 
 
 filename junk dummy; 
 proc printto  log=junk; run; 
 proc nlp data=first&q noprint out=AllBootDataNLP_1 tech=&tech    
   absgconv=&converge maxiter=&iter maxfunc=&func; 
  by replicate; 
   max GYI; 
   parms boottheta3 = &t3, boottheta4 = &t4; 
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   nrun=&q; 
   TPR = 1-probnorm((boottheta3-m1d)/s1d)-probnorm((boottheta4- 
    m2d)/s2d) + probbnrm( ((boottheta3-m1d)/s1d),   
    ((boottheta4-m2d)/s2d), pd); 
   FPR = 1-probnorm((boottheta3-m1h)/s1h)-probnorm((boottheta4- 
    m2h)/s2h) + probbnrm( ((boottheta3-m1h)/s1h),   
    ((boottheta4-m2h)/s2h), ph); 
   Sens = TPR; 
   Spec = 1 - FPR; 
   GYI = TPR - &R*FPR; 
 run; quit; 
 
  proc nlp data=middle&q noprint out=AllBootDataNLP_2 tech=&tech  
    absgconv=&converge maxiter=&iter maxfunc=&func; 
  by replicate; 
   max GYI; 
   parms boottheta3 = &t3, boottheta4 = &t4; 
   nrun=&q; 
   TPR = 1-probnorm((boottheta3-m1d)/s1d)-probnorm((boottheta4- 
    m2d)/s2d) + probbnrm( ((boottheta3-m1d)/s1d),   
    ((boottheta4-m2d)/s2d), pd); 
   FPR = 1-probnorm((boottheta3-m1h)/s1h)-probnorm((boottheta4- 
    m2h)/s2h) + probbnrm( ((boottheta3-m1h)/s1h),   
    ((boottheta4-m2h)/s2h), ph); 
   Sens = TPR; 
   Spec = 1 - FPR; 
   GYI = TPR - &R*FPR; 
 run; quit; 
 
  proc nlp data=last&q noprint out=AllBootDataNLP_3 tech=&tech   
    absgconv=&converge maxiter=&iter maxfunc=&func; 
  by replicate; 
   max GYI; 
   parms boottheta3 = &t3, boottheta4 = &t4; 
   nrun=&q; 
   TPR = 1-probnorm((boottheta3-m1d)/s1d)-probnorm((boottheta4- 
    m2d)/s2d) + probbnrm( ((boottheta3-m1d)/s1d),   
    ((boottheta4-m2d)/s2d), pd); 
   FPR = 1-probnorm((boottheta3-m1h)/s1h)-probnorm((boottheta4- 
    m2h)/s2h) + probbnrm( ((boottheta3-m1h)/s1h),   
    ((boottheta4-m2h)/s2h), ph); 
   Sens = TPR; 
   Spec = 1 - FPR; 
   GYI = TPR - &R*FPR; 
 run; quit; 
 
 data AllBootDataNLP; 
  set AllBootDataNLP_1 AllBootDataNLP_2 AllBootDataNLP_3; 
 run; 
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 proc datasets nolist;  
  append data=AllBootDataNLP base=AllBootData&i; 
  delete BootDataMSDC_&q first&q middle&q last&q AllBootDataNLP_1  
   AllBootDataNLP_2 AllBootDataNLP_3 AllBootDataNLP; 
 run; quit; 
 proc printto; run; 
%end; 
%mend; 
%boot; 
 
data AllBootData&i; 
 set AllBootData&i (keep = nrun replicate m1h s1h m2h s2h m1d s1d m2d s2d ph  
 pd boottheta3 boottheta4 GYI Sens Spec); 
  lcutoff1 = m1h - (&z*s1h); lcutoff2 = m2h - (&z*s2h); 
  hcutoff1 = m1d + (&z*s1d); hcutoff2 = m2d + (&z*s2d); 
run; 
 
data extreme&i; 
 set allbootdata&i; 
  if boottheta3<lcutoff1 or boottheta4<lcutoff2 or boottheta3>hcutoff1 or  
  boottheta4>hcutoff2; 
run; 
 
data finalbootdata&i (keep = nrun replicate lcutoff1 lcutoff2 hcutoff1 hcutoff2 
finalboottheta3 finalboottheta4 finalbootSens finalbootSpec good_boot_thetas); 
 set AllBootData&i; 
 by nrun replicate; 
  
 if lcutoff1 <= boottheta3 <= hcutoff1 and lcutoff2 <= boottheta4 <= hcutoff2 then  
  good_boot_thetas=1; 
  else good_boot_thetas=0; 
  
 if good_boot_thetas=1 then do; 
  finalboottheta3 = boottheta3; 
  finalboottheta4 = boottheta4; 
  finalbootSens = Sens; 
  finalbootSpec = Spec; 
 end; 
 if good_boot_thetas=0 then do; 
  finalboottheta3 = .; 
  finalboottheta4 = .; 
  finalbootSens = .; 
  finalbootSpec = .; 
 end; 
run; 
 
/* Calculate the Variances of  Theta1 and Theta2 for each of the Bootstrapped Datasets' 
1,000 Replicates */ 
proc sort data=finalbootdata&i; by nrun; run; 
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proc corr data = finalbootdata&i cov out=OutCov&i (type=cov) nocorr noprint; 
 var finalboottheta3 finalboottheta4; 
 by nrun; 
 where good_boot_thetas=1; 
run; 
data OutCov1_&i; 
 set OutCov&i;  
 where _TYPE_='COV'; 
 by nrun; 
run; 
data S1_&i S2_&i; 
 set OutCov1_&i; 
 by nrun; 
 first=first.nrun; 
 last=last.nrun; 
 if first.nrun = 1 then output S1_&i; 
 if last.nrun = 1 then output S2_&i; 
run; 
data S1_&i; 
 set S1_&i (keep = nrun finalboottheta3 finalboottheta4); 
 rename finalboottheta3=VarT3; 
 rename finalboottheta4=CovT3T4; 
run; 
data S2_&i; 
 set S2_&i (keep = nrun finalboottheta4); 
 rename finalboottheta4=VarT4; 
run; 
data VarCov&i; 
 merge S1_&i S2_&i; 
 by nrun; 
run; 
/* Calculating the Mean Bootstrapped Theta's */ 
proc means data = finalbootdata&i noprint; 
 by nrun; 
 var finalboottheta3; 
 where good_boot_thetas=1; 
 output out = Means1_&i mean = MeanTheta3; 
run; 
proc means data = finalbootdata&i noprint; 
 by nrun; 
 var finalboottheta4; 
 where good_boot_thetas=1; 
 output out = Means2_&i mean = MeanTheta4; 
run; 
data Means&i; 
 merge Means1_&i Means2_&i; 
 by nrun; 
 drop _type_ _freq_; 
run; 
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proc summary data=finalbootdata&i; 
 class nrun; 
 var finalbootSens finalbootSpec; 
 output out=bootvarSS&i (where=(nrun>.) drop=_freq_ _type_) var=VarSe VarSp; 
 where good_boot_thetas=1; 
run; 
 
data Means_VarCov&i; merge Means&i VarCov&i; by nrun; run; 
data SimThetaVarCov&i; merge finalsimdata&i Means_VarCov&i bootvarSS&i;
 by nrun;  run; 
 
/* Calculation of the Simultaneous (1-alpha)100% CI's for the Estimated Thresholds */ 
data SimConfInt&i; 
 set SimThetaVarCov&i; 
 f = finv(0.95, &p, &TSS-&p); 
 cv = probit(1-0.05/(2*&p)); 
 lobon1 = finalsimtheta3 - cv*sqrt(varT3); 
 upbon1 = finalsimtheta3 + cv*sqrt(varT3); 
 lobon2 = finalsimtheta4 - cv*sqrt(varT4); 
 upbon2 = finalsimtheta4 + cv*sqrt(varT4); 
run; 
 
/* Combine Original "True" Threshold Values with the Estimated Simultaneous CI's to ID 
if the True Values lie within the SCIs/CRs.. Done with an Indicator Variable 0 or 1. */ 
/* This will be used to estimate the Coverage. Additionally the area of each SCI/CR is 
calculated. */ 
data SCI_CR&i; 
  if _n_ = 1 then set Parms_TrueValues&i; 
 set SimConfInt&i (keep=nrun good_sim_thetas finalsimtheta3 finalsimtheta4  
 finalsimSens finalsimSpec finalsimGYI MeanTheta3 MeanTheta4 VarT3 VarT4  
 CovT3T4 VarSe VarSp f lobon1 upbon1 lobon2 upbon2 prob_sim3 prob_sim4 
 prob_sim34); 
 
 if good_sim_thetas=0 then do; 
  MeanTheta3=.; MeanTheta4=.; 
  VarT3=.; VarT4=.; CovT3T4=.; VarSe=.; VarSp=.; 
 end; 
 
 /* 95% Simultaneous Confidence Regions for each of the Simulated Dataset 
 Theta1 and Theta2 Optimal Threshold Values */ 
 if lobon1 <= truetheta3 <= upbon1 AND lobon2 <= truetheta4 <= upbon2 then 
 TrueInSCI = 1; 
  else TrueInSCI=0; 
 if lobon1 = . or upbon1 = . or lobon2 = . or upbon2 = . then TrueInSCI=.; 
 
 /* Calculates the width of each CI for each test */ 
 SCI_wTest1 = upbon1-lobon1; SCI_wTest2 = upbon2-lobon2; 
 
 /* Calculates the area of the rectangular Simultaneous CI region */ 
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 SCI_area = SCI_wTest1 * SCI_wTest2; 
 
 /* 95% Confidence Regions for each of the Simulated Dataset Theta1 and 
 Theta2 Optimal Threshold Values */  
 /* The Variances and Covariances were estimated using the Bootstrapped 
 Datasets from each of the Simulated Datasets */ 
 if good_sim_thetas=1 then do; 
  det = (VarT3*VarT4) - ((CovT3T4)**2); 
  matmult = (VarT4*(finalsimtheta3 - truetheta3)**2)-    
   (2*CovT3T4*(finalsimtheta3 - truetheta3)*(finalsimtheta4 -   
   truetheta4)) + (VarT3*(finalsimtheta4 - truetheta4)**2); 
   LHS = (1/det) * matmult; 
  RHS = ( (&p*(&TSS-1)) / (&TSS-&p) ) * f; 
 end; 
 if good_sim_thetas=0 then do; 
  det=.; matmult=.; LHS=.;  RHS=.; 
 end; 
  
 if LHS <= RHS then TrueInConfReg = 1; 
 if LHS > RHS then TrueInConfReg = 0; 
 if LHS = . and RHS = . then TrueInConfReg = .; 
 
/* Calculate the Area of the CRs */ 
 trace = VarT3 + VarT4; 
 lambda1 = ( trace + Sqrt( trace**2 - 4*det ) ) / 2; 
 lambda2 = ( trace - Sqrt( trace**2 - 4*det ) ) / 2; 
 HLength_lambda1 = Sqrt(lambda1) * Sqrt( RHS ); 
 HLength_lambda2 = Sqrt(lambda2) * Sqrt( RHS ); 
 Area_CR = &pi * HLength_lambda1 * Hlength_lambda2; 
 
 correlation = ( CovT3T4 / (sqrt(VarT3*VarT4)) ); 
 
run; 
data all_SCI_CR&i; 
 set SCI_CR&i (drop = f det matmult LHS RHS trace lambda1 lambda2  
 HLength_lambda1 HLength_lambda2); 
run; 
 
data bias_MSE_SCI_CR&i; set all_SCI_CR&i; 
 biasTheta3 = finalsimtheta3 - truetheta3; 
 biasTheta4 = finalsimtheta4 - truetheta4; 
 biasSens = finalsimSens - trueSens; 
 biasSpec = finalsimSpec - trueSpec; 
 
 rmse_theta3 = sqrt( VarT3 + (biasTheta3)**2 ); 
 rmse_theta4 = sqrt( VarT4 + (biasTheta4)**2 ); 
 rmse_Sens = sqrt( VarSe + (biasSens)**2 ); 
 rmse_Spec = sqrt( VarSp + (biasSpec)**2 ); 
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 if biasSens > 0 then flagOverSens=1; if biasSens < 0 then 
 flagOverSens=0; if biasSens = . then flagOverSens = .; 
 if biasSpec > 0 then flagOverSpec=1; if biasSpec < 0 then 
 flagOverSpec=0; if biasSpec = . then flagOverSpec = .; 
run; 
 
/* Estimate the Coverage of the Simultaneous CI's and Confidence Regions */ 
/* Calculates the number of times the sensitivity and specificity from the simulated data 
is over/underestimated from the true values */ 
proc freq data = bias_MSE_SCI_CR&i noprint; 
 table good_sim_thetas / list norow nocol nofreq nocum out=num_missing&i; 
 table prob_sim3 / list norow nocol nofreq nocum out=prob_T3_&i; 
 table prob_sim4 / list norow nocol nofreq nocum out=prob_T4_&i; 
 table prob_sim34 / list norow nocol nofreq nocum out=prob_T3T4_&i; 
 table TrueInSCI / list norow nocol nofreq nocum out=Coverage_SCI&i; 
 table TrueInConfReg / list norow nocol nofreq nocum out=Coverage_CR&i; 
 table flagOverSens / list norow nocol nofreq nocum out=Overest_SimSe&i; 
 table flagOverSpec / list norow nocol nofreq nocum out=Overest_SimSp&i; 
run; 
 
/* Calculates the mean Bias and RMSE for each simulated theta1 and theta2 value from 
the true values */ 
proc means data = bias_MSE_SCI_CR&i n mean median std q1 q3 noprint; 
 var biasTheta3 biasTheta4 biasSens biasSpec rmse_theta3 rmse_theta4 
 rmse_Sens rmse_Spec; 
 output out=bias_sim&i (drop=_type_ _freq_)  
 mean=mean_biasT3 mean_biasT4 mean_biasSe mean_biasSp mean_RMSET3 
 mean_RMSET4 mean_RMSESe mean_RMSESp 
 median=med_biasT3 med_biasT4 med_biasSe med_biasSp med_RMSET3 
 med_RMSET4 med_RMSESe med_RMSESp; 
run; 
/* Calculates the mean/median of the Variances, Covariances, and computed correlation 
*/ 
/* Compute the mean/median of the width of the SCIs, and the area of the CR */ 
proc summary data=bias_MSE_SCI_CR&i; 
 var VarT3 VarT4 CovT3T4 correlation SCI_wTest1 SCI_wTest2  Area_CR; 
 output out=VarCovCorrWidthArea_Boot&i (drop=_freq_ _type_)  
 mean=mean_VarT3 mean_VarT4 mean_CovT3T4 mean_comp_corr 
 meanSCI_width1 meanSCI_width2 meanCR_area 
 median=med_VarT3 med_VarT4 med_CovT3T4 med_comp_corr 
 medSCI_width1 medSCI_width2 medCR_area; 
run; 
 
/* Calculates the correlation between the simulated theta1 and theta2 values */ 
proc corr data=finalsimdata&i outp=auto_corr_simthetas&i noprint; 
 var finalsimtheta3 finalsimtheta4; 
 where good_sim_thetas=1; 
run; 
data auto_corr_simthetas&i; keep _TYPE_ _NAME_ finalsimtheta3;  
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 set auto_corr_simthetas&i;  
 where _TYPE_='CORR' and _NAME_='finalsimtheta4'; 
run; 
data auto_corr_simthetas&i (rename=(finalsimtheta3=auto_corr));  

drop _TYPE_ _NAME_; set auto_corr_simthetas&i; run; 

/* Create Parameter Set Data File */ 
proc sort data=bias_MSE_SCI_CR&i; by nrun; run; 
proc sort data=finalsimdata&i; by nrun; run; 
data final_parm_set_nosim&i; 
 merge bias_MSE_SCI_CR&I; 
 by nrun; 
run; 
data final_parm_set_test&i; 
 merge final_parm_set_nosim&i finalsimdata&i (keep = nrun m1h m2h m1d m2d  
  s1h s2h s1d s2d ph pd); 
 by nrun; 
 rename m1h=sim_m1h; rename m2h=sim_m2h;  
 rename m1d=sim_m1d; rename m2d=sim_m2d; 
 rename s1h=sim_s1h; rename s2h=sim_s2h;  
 rename s1d=sim_s1d; rename s2d=sim_s2d; 
 rename ph=sim_ph; rename pd=sim_pd; 
run; 
 
data bn.final_parm_set&i; 
 merge final_parm_set_nosim&i (keep=n_d n_h R ph pd AUC1 AUC2 b1 b2)  
  final_parm_set_test&i (drop=n_d n_h R AUC1 AUC2 b1 b2); 
 TSS = &TSS; k=&k; 
run; 
 
/* Create Parameterization File - Results of Simulation Studies */ 
data num_missing&i; set num_missing&i (keep=good_sim_thetas count);  
 where good_sim_thetas=0; drop good_sim_thetas; 
 rename count=Num_Sim_Missing; label count = 'Num_Sim_Missing'; 
run; 
data prob_T3_&i; set prob_T3_&i (keep= prob_sim3 count);  
 where prob_sim3=1; drop prob_sim3; 
 rename count=Num_Prob_T3; label count = 'Num_Prob_T3'; 
run; 
data prob_T4_&i; set prob_T4_&i (keep= prob_sim4 count);  
 where prob_sim4=1; drop prob_sim4; 
 rename count=Num_Prob_T4; label count = 'Num_Prob_T4'; 
run; 
data prob_T3T4_&i; set prob_T3T4_&i (keep= prob_sim34 count);  
 where prob_sim34=1; drop prob_sim34; 
 rename count=Num_Prob_T3T4; label count = 'Num_Prob_T3T4'; 
run; 
data Coverage_SCI&i; set Coverage_SCI&i (keep=TrueInSCI percent);  
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 where TrueInSCI=1; drop TrueInSCI; 
 rename percent=SCI_Coverage; label percent = 'SCI_Coverage'; 
run; 
data Coverage_CR&i; set Coverage_CR&i (keep=TrueInConfReg percent);  
 where TrueInConfReg=1; drop TrueInConfReg; 
 rename percent=CR_Coverage; label percent = 'CR_Coverage'; 
run; 
data Overest_SimSe&i; set Overest_SimSe&i (keep=flagOverSens percent);  
 where flagOverSens=1; drop flagOverSens; 
 rename percent=Perc_Overest_Se; label percent = 'Perc_Overest_Se'; 
run; 
data Overest_SimSp&i; set Overest_SimSp&i (keep=flagOverSpec percent);  
 where flagOverSpec=1; drop flagOverSpec; 
 rename percent=Perc_Overest_Sp; label percent = 'Perc_Overest_Sp'; 
run; 
 
/* Creates Final Parameterization Results - 1 observation for each Parameter set (Wide) 
*/ 
data results&i; 
 merge sasparms NRTrueValues&i VarCovCorrWidthArea_Boot&i    
  auto_corr_simthetas&i bias_sim&I Num_missing&i Coverage_SCI&i  
 Coverage_CR&i Overest_SimSe&i; 
 N_H = &N0; N_D=&N1; 
 if Num_Sim_Missing = . then Num_Sim_Missing=0; 
run; 
proc append data=results&i base=bn.BNallresults; run; 
 
/* Creates "Problem" file */ 
data problems&i; 
 merge sasparms Num_missing&i prob_T3_&i prob_T4_&i prob_T3T4_&i; 
 N_H = &N0; N_D=&N1; 
 /* If the numbers below are missing, there were no missing values so no dataset 
 was created. For completeness, force these as 0's */ 
 if Num_Sim_Missing = . then Num_Sim_Missing=0; 
 if Num_Prob_T3 = . then Num_Prob_T3=0; 
 if Num_Prob_T4 = . then Num_Prob_T4=0; 
 if Num_Prob_T3T4 = . then Num_Prob_T3T4=0; 
run; 
proc append data=problems&i base=bn.BNallproblems; run; 

/* Empirical */ 
options ps=65 ls=116 obs=max formdlim=# nodate nonumber;  
libname BN 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BN'; 
libname BNemp 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BN\Empirical'; 
 
%macro EMP; 
%do i=1 %to 144; 
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data sasparms;  
 set BN.sasparms3; if _n_=&i;  
 call symput('TSS',TSS);  call symput('k',k); 
 call symput('AUC1',AUC1);  call symput('AUC2',AUC2);  /*  
 call symput('ph',ph); call symput('pd',pd);  
 call symput('s1d',s1d); call symput('s2d',s2d); 
run; 
 
%let pi=4*atan(1); 
%let times=1000; %let rep=1000; %let p=2;  %let z=1.645;  
%let bratio1=s1h/s1d; %let bratio2=s2h/s2d; 
%let R=1; 
%let N0=floor(&TSS/(&k+1));  %let N1=&TSS - &N0;  
%let m1h=0; %let s1h=1; %let m2h=0; %let s2h=1; 
%let converge=0.001; %let iter=1000; %let func=1000; %let tech=nrridg; 
 
data parms&i; 
 R=&R; ph=&ph; pd=&pd; AUC1 = &AUC1; AUC2 = &AUC2; 
 m1h=&m1h; s1h=&s1h; m2h=&m2h; s2h=&s2h; 
 s1d=&s1d; s2d=&s2d; 
 b1=s1h/s1d; b2=s2h/s2d; 
 m1d = ( s1d * Sqrt(1 + (b1)**2) * probit(AUC1) ) + m1h; 
 m2d = ( s2d * Sqrt(1 + (b2)**2) * probit(AUC2) ) + m2h; 
 Ca1=(m1d-m1h)/s1d; Ca2=(m2d-m2h)/s2d; 
 Cauc1 = probnorm( Ca1 / sqrt(1+b1**2) ); 
 Cauc2 = probnorm( Ca2 / sqrt(1+b2**2) ); 
 
 b1 = s1h / s1d; a1 = (m1d - m1h) / s1d; 
 b2 = s2h / s2d; a2 = (m2d - m2h) / s2d; 
run; 
 
proc nlp data=parms&i noprint out=NRTrueValues&i tech=&tech absgconv=&converge  
  maxiter=&iter maxfunc=&func; 
 max trueGYI; 
 parms truetheta3 = -4 to 4 by 0.1, truetheta4 = -4 to 4 by 0.1; 
 trueTPR = 1-probnorm((truetheta3-m1d)/s1d)-probnorm((truetheta4-m2d)/s2d) +  
  probbnrm( ((truetheta3-m1d)/s1d), ((truetheta4-m2d)/s2d), pd); 
 trueFPR = 1-probnorm((truetheta3-m1h)/s1h)-probnorm((truetheta4-m2h)/s2h) +  
  probbnrm( ((truetheta3-m1h)/s1h), ((truetheta4-m2h)/s2h), ph); 
 trueSens = trueTPR; 
 trueSpec = 1 - trueFPR; 
 trueGYI = trueTPR - &R*trueFPR; 
run; 
 
data sim; 
 set NRTrueValues&i; 
 call symput('t1',truetheta1); 
 call symput('t2',truetheta2); 
run; 
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data Parms_TrueValues&i; 
 N_d=&N1; N_h=&N0; R=&R; 
 merge Parms&i (keep=AUC1 AUC2 b1 b2 ph pd)  
 NRTrueValues&i (keep=truetheta3 truetheta4 trueGYI trueSens trueSpec); 
run; 
 
/* Simulating Data */ 
%let seed1=%eval(12345+&i); %let seed2=%eval(54321+&i); 
data disease&i (keep=id test1d test2d nrun h_d_flag) healthy&i (keep=id test1h test2h 
nrun h_d_flag); 
 set parms&i; 
 cd=sqrt(1-pd**2); ch=sqrt(1-ph**2); 
  do k=1 to &times; 
   nrun=k; 
   do l=1 to &N1; 
    id=l; 
    h_d_flag=1; 
     test1d = rannor(&seed1); 
     test2d = pd*test1d+cd*rannor(&seed1); 
           test1d = m1d + s1d*test1d; 
           test2d = m2d + s2d*test2d; 
            output disease&i; 
   end; 
   do j=1 to &N0; 
    id=j; 
    h_d_flag=0; 
     test1h = rannor(&seed2); 
           test2h = ph*test1h+ch*rannor(&seed2); 
           test1h = m1h + s1h*test1h; 
           test2h = m2h + s2h*test2h; 
            output healthy&i; 
   end; 
  end; 
run; 
 
/* Computing the Empirical Estimates to Compare with those chosen by the BN strategy 
*/ 
data disease_healthy&i (drop=id);  
 set disease&i (rename=(test1d=test1 test2d=test2))  
 healthy&i (rename=(test1h=test1 test2h=test2)); 
run; 
proc sort data=disease_healthy&i; by nrun; run; 
 
data all_empirical&i bnemp.empirical_final&i; set disease_healthy&i;  
 by nrun; 
 retain yi_mx x_mx y_mx sens_mx spec_mx; 
 set disease_healthy&i; 
 N_d=&N1; N_h=&N0; N=&TSS; 
 bnsum_sn=0; bnsum_fp=0; 
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 thresh_x=test1; thresh_y=test2;  
 do q=1 to N; 
  set disease_healthy&i point=q; 
  if test2>thresh_y  and test1>thresh_x then do;  
      if h_d_flag=1 then bnsum_sn=bnsum_sn+1; 
   if h_d_flag=0 then bnsum_fp =bnsum_fp +1; 
     end; 
 end; 
 sens_bn=bnsum_sn/N_d; 
 fp_bn =bnsum_fp/N_h; 
 spec_bn=1-fp_bn; 
 youden=sens_bn+spec_bn-1; 
 
 if first.nrun=1 then do; 
  yi_mx=youden; x_mx=thresh_x; y_mx=thresh_y;
 sens_mx=sens_bn; spec_mx=spec_bn; 
 end; 
 if youden>yi_mx then do; 
  yi_mx=youden; x_mx=thresh_x; y_mx=thresh_y;
 sens_mx=sens_bn; spec_mx=spec_bn; 
 end; 
 if youden=yi_mx and sens_bn>sens_mx then do; 
  x_mx=thresh_x; y_mx=thresh_y; sens_mx=sens_bn;
 spec_mx=spec_bn; 
 end; 
  output all_empirical&i; 
 if last.nrun=1 then output bnemp.empirical_final&i; 
run; 
 
data empirical_final_red&i; 
  if _n_ = 1 then set Parms_TrueValues&i; 
 set bnemp.empirical_final&i (keep = nrun x_mx y_mx yi_mx sens_mx spec_mx); 
run; 
 
data bias_emp&i; set empirical_final_red&i; 
 biasEmpTheta3 = x_mx - truetheta3; 
 biasEmpTheta4 = y_mx - truetheta4; 
 biasEmpSens = sens_mx - trueSens; 
 biasEmpSpec = (spec_mx) - trueSpec; 
 
 if biasEmpSens > 0 then flagOverEmpSens=1; if biasEmpSens < 0 then  
  flagOverEmpSens=0; if biasEmpSens = . then flagOverEmpSens = .; 
 if biasEmpSpec > 0 then flagOverEmpSpec=1; if biasEmpSpec < 0 then  
  flagOverEmpSpec=0; if biasEmpSpec = . then flagOverEmpSpec = .; 
 
run; 
/* Calculates the mean Bias and RMSE for each empirical theta1 and theta2 value from 
the true values */ 
proc means data = bias_emp&i n mean median std q1 q3 noprint; 
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 var biasEmpTheta3 biasEmpTheta4 biasEmpSens biasEmpSpec; 
 output out=bias_empirical&i (drop=_type_ _freq_)  
 mean=mean_biasempT3 mean_biasempT4 mean_biasempSe 
 mean_biasempSp 
 median=med_biasempT3 med_biasempT4 med_biasempSe med_biasempSp; 
run; 
proc freq data=bias_emp&i noprint; 
 table flagOverEmpSens / list norow nocol nofreq nocum out=Overest_EmpSe&i; 
 table flagOverEmpSpec / list norow nocol nofreq nocum out=Overest_EmpSp&i; 
run; 
data Overest_EmpSe&i; set Overest_EmpSe&i (keep=flagOverEmpSens percent);
 where flagOverEmpSens=1; drop flagOverEmpSens; 
 rename percent=Perc_Overest_Emp_Se;  
 label percent = 'Perc_Overest_Emp_Se'; 
run; 
data Overest_EmpSp&i; set Overest_EmpSp&i (keep=flagOverEmpSpec percent);  
 where flagOverEmpSpec=1; drop flagOverEmpSpec; 
 rename percent=Perc_Overest_Emp_Sp;  
 label percent = 'Perc_Overest_Emp_Sp'; 
run; 
 
data allemp&i; 
 set bias_emp&i (keep=yi_mx x_mx y_mx sens_mx spec_mx biasEmpTheta3  
   biasEmpTheta4 biasEmpSens biasEmpSpec flagOverEmpSens  
   flagOverEmpSpec); 
 parameter_set_number=&i; 
run; 
 
data allemp_results&i; 
 merge bias_empirical&i Overest_EmpSe&i Overest_EmpSp&i; 
 parameter_set_number=&i; 
run; 
 
proc append data=allemp&i base=bnemp.BNallempicaldata; run; 
proc append data=allemp_results&i base=bnemp.BNallempiricalresults; run; 
 
%end; 
 
%mend EMP; 
 
%EMP; 
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8.4.4 Assessing Normality 

libname normalbp 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL 
FROM CLUSTER - KOTI and MERLOT\BP'; 
libname normalbn 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL 
FROM CLUSTER - KOTI and MERLOT\BN'; 
libname bp 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BP\New_Individual'; 
libname bn 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BN\Individual'; 
 
/* Used a random number generator (http://www.random.org/) to select the seeds. 
Bounds were 1 to 1,000,000 */ 
/* Select 14 datasets for each sequential testing strategy (~10%) to look at the normality 
of the OOP components */ 
/* BELIEVE THE POSITIVE */ 
proc surveyselect data = normalbp.sasparms  
 method = SRS rep = 1 sampsize = 14 seed = 319595 out = normalbp; 
run; 
proc print data = normalbp noobs; run; 
data bp3; 
 set bp.final_parm_set3; 
 parmset=3; 
run; 
data bp15; 
 set bp.final_parm_set15; 
 parmset=15; 
run; 
data bp17; 
 set bp.final_parm_set17; 
 parmset=17; 
run; 
data bp27; 
 set bp.final_parm_set27; 
 parmset=27; 
run; 
data bp48; 
 set bp.final_parm_set48; 
 parmset=48; 
run; 
data bp57; 
 set bp.final_parm_set57; 
 parmset=57; 
run; 
data bp59; 
 set bp.final_parm_set59; 
 parmset=59; 
run; 
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data bp67; 
 set bp.final_parm_set67; 
 parmset=67; 
run; 
data bp69; 
 set bp.final_parm_set69; 
 parmset=69; 
run; 
data bp78; 
 set bp.final_parm_set78; 
 parmset=78; 
run; 
data bp80; 
 set bp.final_parm_set80; 
 parmset=80; 
run; 
data bp113; 
 set bp.final_parm_set113; 
 parmset=113; 
run; 
data bp124; 
 set bp.final_parm_set124; 
 parmset=124; 
run; 
data bp129; 
 set bp.final_parm_set129; 
 parmset=129; 
run; 
 
data allbp; 
 set bp3 bp15 bp17 bp27 bp48 bp57 bp59 bp67 bp69 bp78 bp80 bp113 bp124 
 bp129; 
run; 
 
proc greplay igout=work.gseg nofs; 
 delete _all_; 
run; quit; 
 
filename bp 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\Normality'; 
goptions gsfname=bp dev=gif373; 
proc univariate data=allbp plot normal; 
 var finalsimtheta1 finalsimtheta2; 
 where good_sim_thetas=1; 
 histogram / normal; 
 qqplot; 
 by parmset; 
run; 
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/* BELIEVE THE NEGATIVE */ 
proc surveyselect data = normalbn.sasparms3  
 method = SRS rep = 1 sampsize = 14 seed = 834213 out = normalbn; 
run; 
proc print data = normalbn noobs; run; 
 
data bn21; 
 set bn.final_parm_set21; 
 parmset=21; 
run; 
data bn24; 
 set bn.final_parm_set24; 
 parmset=24; 
run; 
data bn29; 
 set bn.final_parm_set29; 
 parmset=29; 
run; 
data bn36; 
 set bn.final_parm_set36; 
 parmset=36; 
run; 
data bn40; 
 set bn.final_parm_set40; 
 parmset=40; 
run; 
data bn82; 
 set bn.final_parm_set82; 
 parmset=82; 
run; 
data bn85; 
 set bn.final_parm_set85; 
 parmset=85; 
run; 
data bn86; 
 set bn.final_parm_set86; 
 parmset=86; 
run; 
data bn90; 
 set bn.final_parm_set90; 
 parmset=90; 
run; 
data bn96; 
 set bn.final_parm_set96; 
 parmset=96; 
run; 
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data bn97; 
 set bn.final_parm_set97; 
 parmset=97; 
run; 
data bn105; 
 set bn.final_parm_set105; 
 parmset=105; 
run; 
data bn115; 
 set bn.final_parm_set115; 
 parmset=115; 
run; 
data bn139; 
 set bn.final_parm_set139; 
 parmset=139; 
run; 
 
data allbn; 
 set bn21 bn24 bn29 bn36 bn40 bn82 bn85 bn86 bn90 bn96 bn97 bn105 bn115 
 bn139; 
run; 
 
proc greplay igout=work.gseg nofs; 
 delete _all_; 
run; quit; 
 
filename bn 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\Normality\bn'; 
goptions gsfname=bn dev=gif373; 
proc univariate data=allbn plot normal; 
 var finalsimtheta3 finalsimtheta4; 
 where good_sim_thetas=1; 
 histogram / normal; 
 qqplot; 
 by parmset; 
run; 

 

8.4.5 Prediction Models for SCI Widths and TSS 

libname all 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\All'; 
libname bpall 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BP\New_Individual'; 
libname bnall 'C:\Documents and Settings\wilkar\Desktop\Dissertation!\FINAL FROM 
CLUSTER - KOTI and MERLOT\BN\Individual'; 
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data all.all_bp_estimation all.all_bp_test; 
 set bpall.final_parm_set1 - bpall.final_parm_set144 (keep=nrun N_d N_h TSS k  
  ph pd AUC1 AUC2 b1 b2 sim_ph sim_pd sim_m1h sim_m2h sim_m1d  
  sim_m2d sim_s1h sim_s1d sim_s2h sim_s2d TrueTheta1 TrueTheta2  
  finalsimtheta1 finalsimtheta2 good_sim_thetas prob_sim1 prob_sim2 
  VarT1 VarT2 CovT1T2 SCI_wTest1 SCI_wTest2); 
 sim_a1=(sim_m1d-sim_m1h) / sim_s1d; sim_b1=sim_s1h/sim_s1d; 
 sim_a2=(sim_m2d-sim_m2h) / sim_s2d; sim_b2=sim_s2h/sim_s2d; 
 AUCTest1=probnorm( sim_a1 / sqrt(1+sim_b1**2) ); 
 AUCTest2=probnorm( sim_a2 / sqrt(1+sim_b2**2) ); 
 
 if nrun le 500 then output all.all_bp_estimation; 
  else output all.all_bp_test; 
run; 
data all.all_bn_estimation all.all_bn_test; 
 set bnall.final_parm_set1 - bnall.final_parm_set144 (keep=nrun N_d N_h   
 TSS k  ph pd AUC1 AUC2 b1 b2 sim_ph sim_pd sim_m1h sim_m2h   
 sim_m1d sim_m2d sim_s1h sim_s1d sim_s2h sim_s2d TrueTheta3  
 TrueTheta4 finalsimtheta3 finalsimtheta4 good_sim_thetas prob_sim3 prob_sim4 
 VarT3 VarT4 CovT3T4 SCI_wTest1 SCI_wTest2); 
 sim_a1=(sim_m1d-sim_m1h) / sim_s1d; sim_b1=sim_s1h/sim_s1d; 
 sim_a2=(sim_m2d-sim_m2h) / sim_s2d; sim_b2=sim_s2h/sim_s2d; 
 AUCTest1=probnorm( sim_a1 / sqrt(1+sim_b1**2) ); 
 AUCTest2=probnorm( sim_a2 / sqrt(1+sim_b2**2) ); 
 
 if nrun le 500 then output all.all_bn_estimation; 
  else output all.all_bn_test; 
run; 
 
/*proc freq data=all.all_bp_estimation; table good_sim_thetas / list missing; run;*/ 
/*proc freq data=all.all_bn_estimation; table good_sim_thetas / list missing; run;*/ 
/*proc freq data=all.all_bp_test; table good_sim_thetas / list missing; run;*/ 
/*proc freq data=all.all_bn_test; table good_sim_thetas / list missing; run;*/ 
 
proc reg data=all.all_bn_estimation outest=estimates; 
 *model SCI_wTest1 = TSS sim_ph sim_pd sim_m1h sim_m2h sim_m1d   
  sim_m2d sim_s1h sim_s1d sim_s2h sim_s2d k / AIC BIC; /* R2=0.65 */ 
 *model SCI_wTest1 = TSS AUCTest1 AUCTest2 sim_ph sim_pd sim_b1 sim_b2  
  k / AIC BIC; /* R2=0.58 */ 
 *model SCI_wTest1 = TSS sim_a1 sim_a2 sim_b1 sim_b2 sim_ph sim_pd k /  
  AIC BIC; /* R2=0.61 */ 
 model SCI_wTest2 = TSS sim_ph sim_pd sim_m1h sim_m2h sim_m1d sim_m2d 
  sim_s1h sim_s1d sim_s2h sim_s2d k / AIC BIC; /* R2=0.61 */ 
 *model SCI_wTest2 = TSS AUCTest1 AUCTest2 sim_ph sim_pd sim_b1 sim_b2  
  k / AIC BIC; /* R2=0.58 */ 
 *model SCI_wTest2 = TSS sim_a1 sim_a2 sim_b1 sim_b2 sim_ph sim_pd k /  
  AIC BIC; /* R2=0.62 */ 
run; 
quit; 
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proc reg data=all.all_bn_estimation outest=estimates; 
 model TSS = SCI_wTest1 sim_ph sim_pd sim_m1h sim_m2h sim_m1d sim_m2d 
  sim_s1h sim_s1d sim_s2h sim_s2d k / AIC BIC; /* R2=0.42 */ 
 *model TSS = SCI_wTest2 sim_ph sim_pd sim_m1h sim_m2h sim_m1d   
  sim_m2d sim_s1h sim_s1d sim_s2h sim_s2d k / AIC BIC; /* R2=0.39 */ 
 *model TSS = SCI_wTest1 AUCTest1 AUCTest2 sim_ph sim_pd sim_b1 sim_b2  
  k / AIC BIC; /* R2=0.36 */ 
 *model TSS = SCI_wTest2 AUCTest1 AUCTest2 sim_ph sim_pd sim_b1 sim_b2  
  k / AIC BIC; /* R2=0.36 */ 
 *model TSS = SCI_wTest1 sim_a1 sim_a2 sim_b1 sim_b2 sim_ph sim_pd k /  
  AIC BIC; /* R2=0.38 */ 
 *model TSS = SCI_wTest2 sim_a1 sim_a2 sim_b1 sim_b2 sim_ph sim_pd k /  
  AIC BIC; /* R2=0.39 */ 
run; 
quit; 
 
/* INTERACTIONS */ 
ods output parameterestimates=estimates; 
proc glm data=all.all_bp_estimation; 
 *model SCI_wTest1 = TSS sim_ph sim_pd sim_m1h sim_m2h sim_m1d   
  sim_m2d sim_s1h sim_s1d sim_s2h sim_s2d k TSS*k; 
 *model SCI_wTest1 = TSS AUCTest1 AUCTest2 sim_ph sim_pd sim_b1 sim_b2  
   k /*TSS*k*/ AUCTest1*sim_b1 AUCTest2*sim_b2; 
 *model SCI_wTest1 = TSS sim_a1 sim_a2 sim_b1 sim_b2 sim_ph sim_pd k  
  TSS*k; 
 *model SCI_wTest2 = TSS sim_ph sim_pd sim_m1h sim_m2h sim_m1d   
  sim_m2d sim_s1h sim_s1d sim_s2h sim_s2d k TSS*k; 
 *model SCI_wTest2 = TSS sim_a1 sim_a2 sim_b1 sim_b2 sim_ph sim_pd k  
  TSS*k; 
 *model SCI_wTest2 = TSS AUCTest1 AUCTest2 sim_ph sim_pd sim_b1 sim_b2  
  k /*TSS*k*/ AUCTest1*sim_b1 AUCTest2*sim_b2; 
 *model TSS = SCI_wTest1 AUCTest1 AUCTest2 sim_ph sim_pd sim_b1 sim_b2  
  k AUCTest1*sim_b1 AUCTest2*sim_b2; 
 model TSS = SCI_wTest2 AUCTest1 AUCTest2 sim_ph sim_pd sim_b1 sim_b2  
  k AUCTest1*sim_b1 AUCTest2*sim_b2; 
run; quit; 
 
%macro R2_widths(data=, var=); 
data &data; 
 set &data (drop=_model_ _type_ _depvar_ _rmse_ &var); 
run; 
/* Check Robustreg with calculations */ 
data predval; 
  if _n_ = 1 then set &data (rename=(SCI_wTest1=SCI_wTest1e 
 sim_m1h=sim_m1he sim_m1d=sim_m1de sim_ph=sim_phe sim_pd=sim_pde 
 sim_m2h=sim_m2he sim_m2d=sim_m2de k=ke sim_s1h=sim_s1he 
 sim_s2h=sim_s2he sim_s1d=sim_s1de sim_s2d=sim_s2de)); 
 set all.all_bn_test; 
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 pred_&var= 
 Intercept+SCI_wTest1e*SCI_wTest1+sim_phe*sim_ph+sim_pde*sim_pd+ 
 sim_m 1he*sim_m1h+sim_m2he*sim_m2h+sim_m1de*sim_m1d+ 
 sim_m2de*sim_m2d+sim_s1he*sim_s1h+sim_s1de*sim_s1d+sim_s2he*sim_s2h
 +sim_s2de*sim_s2d+ke*k; 
 
/* pred_&var= 
 Intercept+SCI_wTest2e*SCI_wTest2+sim_phe*sim_ph+sim_pde*sim_pd+ 
 sim_b1e*sim_b1+sim_b2e*sim_b2+AUCTest1e*AUCTest1+*/ 
/* AUCTest2e*AUCTest2+ke*k;*/ 
 
/* pred_&var= 
 Intercept+SCI_wTest2e*SCI_wTest2+sim_phe*sim_ph+sim_pde*sim_pd+ 
 sim_b1e*sim_b1+sim_b2e*sim_b2+sim_a1e*sim_a1+sim_a2e*sim_a2+ke*k;*/ 
run; 
 
proc summary data=all.all_bn_test; 
 var &var; 
 output out=mean&var mean=avg; 
run; 
proc sort data=all.all_bn_test; by nrun; run; 
proc sort data=predval; by nrun; run; 
data sums_est; 
  if _n_ = 1 then set mean&var(keep=avg); 
 merge all.all_bn_test predval (keep=nrun pred_&var); 
 by nrun; 
 tot=(&var - avg)**2; 
 err=(&var - pred_&var)**2; 
run; 
proc summary data=sums_est; 
 var tot err; 
 output out=sums sum=SStot SSerr; 
run; 
data r; 
 set sums; 
 R2=1-(SSerr/SStot); 
run; 
 
proc print data=r; 
 var R2; 
run; 
%mend R2_widths; 
 
%R2_widths(data=estimates, var=TSS); 
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